

Serving Coverage Data in FMI Open Data Portal

Finnish Meteorological Institute

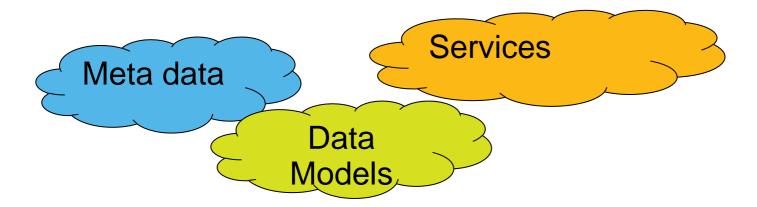
Finnish Meteorological Institute Roope Tervo, Mikko Visa

FMI Open Data

Finnish Meteorological Institute opened its data in 2013.

Basically everything that FMI has property rights was opened.

Data is provided in freely in machine readable format.



https://en.ilmatieteenlaitos.fi/open-data

FMI Open Data Portal

FMI Open Data Portal follows INSPIRE requirements.

The very same data portal works as Open Data and INSPIRE portal.

Data set	Description	Time Interval	Estimated publish date
Weather Observations	Temperature, Wind, Humidity, Ground Temperature	10 min	Open, older data to be added
Sun Radiation	UV, Short and Long Term Radiation	1 min	Open
Marine Observations	Waves, Sea Temperature, Sea Level	1 h	Open
Weather Radars	Precipitation Rate, Precipitation Amount	5 min	Open, older data to be added
Lightning	Thunder Strikes in Finland	5 min	Open

Data set	Description	Time Interval	Estimated publish date
Real Time Observations	Real Time Observations from specific location(s)	AWS 2010 – Soundings 1959 – Flashes 1998 – Sea Level 1971 – Waves 2005 –	Open older data will be added
Climatological Observations	Dayly and monthly temperature mean and extreme values from weather stations	1959 -	Open
Climatologic al Observations	Monthly temperature and precipitation rate mean values interpolated to grid	1961 -	Open
Climatological Reference	Climatological Reference. Temperature, humidity, pressure, precipitation amount and snow depth.	Reference seasons: 1971-2000 1981- 2010	Open

Data set	Description	Time Interval	Estimated publish date
Weather forecast model HIRLAM RCR	Point forecasts and grid data	Latest model run (4 times a day) 054 h	Open
Sea forecast models	Sea level point forecasts, Wave (WAM) and current (HBM) as grid data	Latest model run (4 times a day) 054 h	Open
Environmental Monitoring Facilities	Weather observation stations, radars		2015
Aviation Observations	METAR	30 min	open
Ground & mast observations	Special observations from ground and masts		2016 /Open

Data set	Description	Time Interval	Estimated publish date
Air Quality Observations	Air Quality Observations	1h	2015-2016
Silam Model	Dispersion Model for Air Quality, Forest Fire and Pollen	Latest model run (once a day) 096h	2015
HELMI Ice Model	Ice forecast model	Latest model run (4 times a day) 054 h	open
Soundings	Temperature, Humidity, Pressure, Wind from ground to 25 km height	2 times a day	2015
Road Weather Observations (LIVI)	Road Weather Observations	10 min	open

View Service (WMS)

- Based on GeoServer
- Only the most common layers published

Catalog Service (CSW)

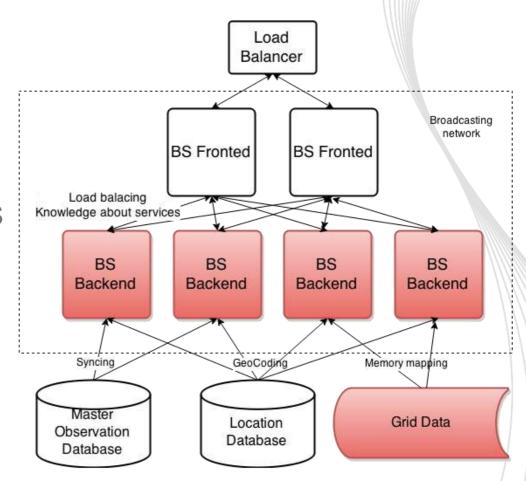
Based on GeoNetwork

Download Service (WFS 2.0)

- Web Feature Service (WFS) 2.0
 Simple Profile
- Based on stored queries
 - Predefined data sets with possibility for additional parameters (i.e. time and area)
- In-house production

Data Models

- Observations and point forecasts as GML
 - The same data is published in:
 - MultiPointCoverage
 - MeasurementTimeSeries
 - SimpleFeature
- Gridded data is provided in appropriate binary format (Grib, NetCDF, GeoTiff...)
 - WFS members contains the metadata 'envelope' with a link to a actual data

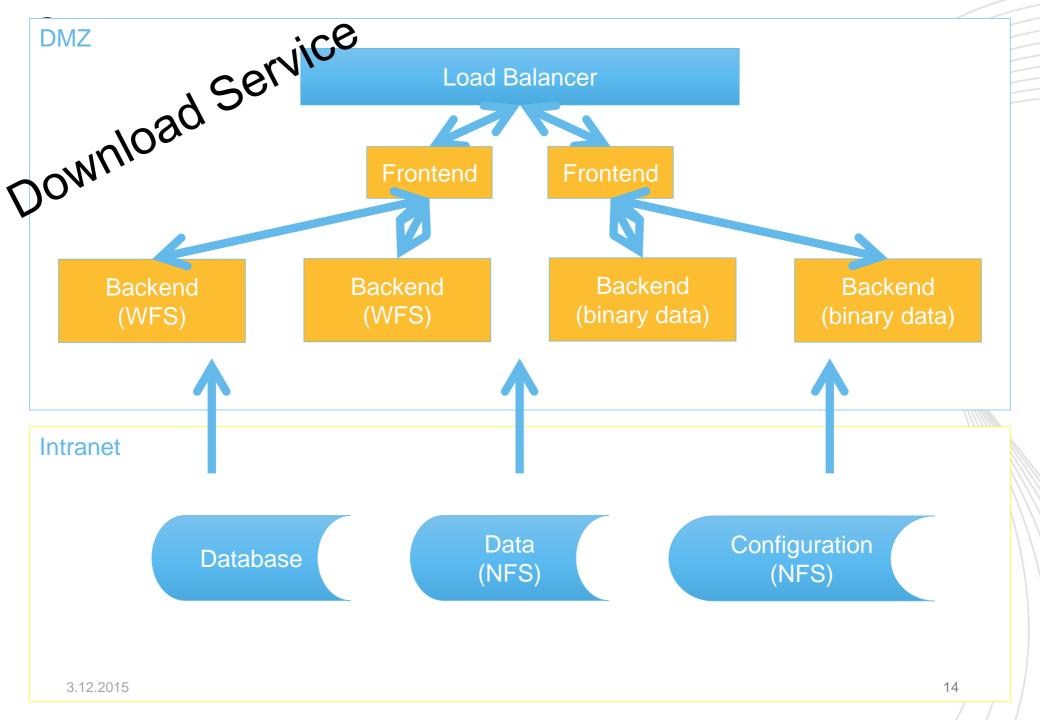


Download Service

Data Services

- Supported data formats:
 querydata (FMI internal)
 - Ready tools for converting other formats (grib, netcdf, hdf...) to querydata
- Memory-maps the data from NFS
- Serves both point data grid data
 - Supports both spatial and temporal interpolation and nearest point selection

Download Service


Download Plugin (WCS-like)

- Provides grid data as binary data
- Supported output formats: GRIB1, GRIB2, NetCDF and Querydata,
- Supports all proj.4 projections (depends on output format support)
- Supports slicing by
 - area (bbox)
 - elevation (pressure and/or model level)
 - time (start time, end time and origin time)
- Possibility to define grid resolution by
 - selecting every Nth grid point to x and y direction
 - grid size → data is interpolated to new grid points

Q3 (WPS-like)

- Provides service to process the data and return output as data or image
- Input: LUA scripts
- Output formats
 - Matrix as text
 - Matrix as binary (querydata)
 - JSON
 - Contoured images: svg, png, jpeg, pdf

```
local param= T
local limit= 0
local r,err= HIR{ hybrid=true, params={param,Z,P} }
assert(r,err)
-- Iterate levels from down to up
-- Store height and pressure when >= 'limit' (last will remain)
local m Z= matrix() -- heights collected; originally all 'nan'
local m P= matrix() -- pressures collected
local m v= matrix() -- value at such positions (not needed)
for g in grids by level(r) do
 for pos,v in points(g[param]) do
  if v>=limit then
    m Z[pos] = g.Z[pos]
   m_P[pos]= g.P[pos]
   m v[pos] = v
  end
 end
end
return m Z, m P, m v
```


xmlns:xlink="http://www.w3.org/lyyy/AL rgi:schemalocation="http://inspire.ec.europa. ata Products **Producing** <label>Convective avai *<ObservableProper Point Forecasts componer

KNOW NOW J/Kd, 12 < ObservableProperty>

File System

BS Data Server

operty gml:id="cbprob"> protability (label) BS Data Server WFS Plugin

Forecast model data

Memory mapped data on the same of the same Server provides logic for requested area and time. Alabely Lightning On-the-fly formatting The sephenomenon (based on template) on the sephenomenon (based on template) INSPIRE compliant interpolation the data for XML response CHOM HOM="Index" > < ObservableProperty>

< | component>

▼<component>

Producing and Angels of Schematocation of the Properties and Schematocation of the Properties and Schematocation of the Properties and the Propert PASPIRE Data Products 20nent | Patral Products 20nent | Patral Products 20nent | Patral Products 20nent | Patral Products <ObservableProper Know now="J/kg" |>

< ObservableProperty>

onent

File System

BS Data Server

operty gml:id="cbprob"> protability (label) BS Data Server WFS Plugin

Forecast model data

Show now="8" |> Server provides relevant meta opertus *Cobservable Property omlide cloud indica Alabely Lightning On-the-fly formatting thasephenomenon (based on templates) data to fetch the data content INSPIRE compliant Containing meta data and link to binary data CHOM HOM="Index" > < ObservableProperty>

< | component>

▼<component>

Producing and Mark Properties and Forecast Community of the Community of t INSPIRE Data Products 20nent | Data Products <ObservableProper

Know now="J/kg" |> < ObservableProperty>

File System

BS Data Server

operty gml:id="cbprob"> prokability (label) BS Data Server Download **Plugin**

Forecast model data

Memory mapped data on the same of the same Server provides logic for interpolation and time. Format the data to requested area and time. requested format and interpolation the data for requested requested projection. -Compound aproperty aml:id="cloudceiling"> < | ObservableProperty>

< | component>

▼<component>

Binary data

Producing in No. 100 per No. 1 cape" ata energy class <label>convective avai. *<ObservableProper KNOW NOW J/Kd, 12

< ObservableProperty>

< | component>

▼<component>

onent

PostGIS DB

BS Data Server

operty gml:id="cbprob"> protability (label) BS Data Server WFS Plugin

Image Mosaic plugin GeoServer database

Show now="8" |> Server provides relevant meta opertus *Copservaplebroberty amligation cloud indication Tabel Lightning On-the-fly formatting data to fetch the data content CHOM HOM="Index" > < ObservableProperty>

Thasephenomenon (based on templates) INSPIRE compliant Containing meta data and link to binary data

Producing and Radar Image. Radar Image. PASPIRE Data Products Observable Property avail Daser Lae Products Observable Property avail Daser Lae Products *<ObservableProper

Know now="J/kg" |> < Observable Property?

onenta

PostGIS DB

GeoServer

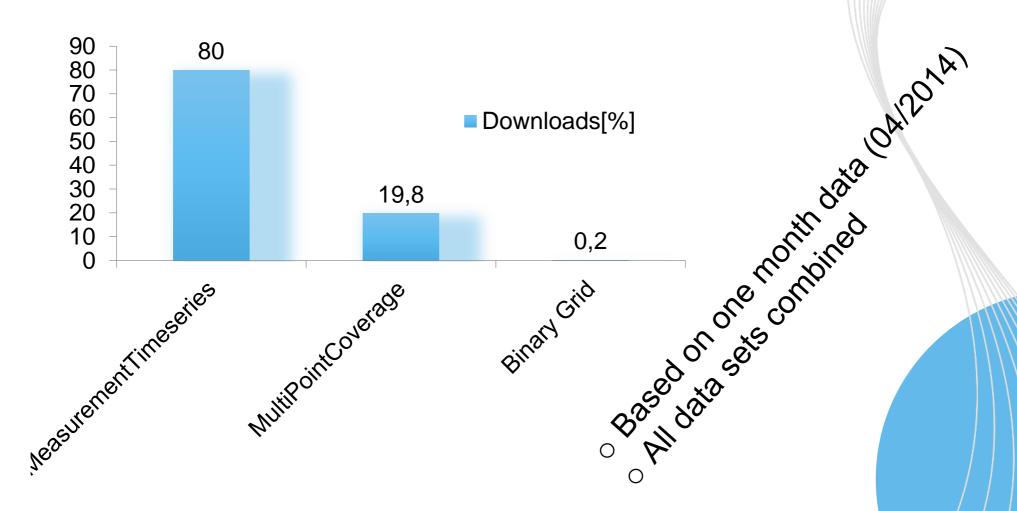
Image Mosaic plugin GeoServer database

Component Geo Tiff images so that indicator">

Geo Tiff images so that indicator indi Raw black and white GeoServer WMS ent2 there's no information lost. Abase May still request enone non images as colored ping) 7 Open Apple Lobert 12 < | component>

operty gml:id="cbprob">

prohability</label>


Some Experiences

At the moment about 7200 registered users

And a little over 430 000 data downloads per day (5 req/s)

Data Models Popularity Comparison

3.12.2015 **21**

Some Experiences

Although standards are followed, there's a gap between provided data model and clients' capabilities

INSPIRE is a long project. Better to look forward than backward

Multiple data formats are required

Converting everything to one data format is complicated, time consuming and expensive.

Handling parameters is one of the hardest parts.

Names, units, levels, time intervals...

Multidimensional data is hard to handle

Data is often 5
 dimensional with
 irregular grid and
 time intervals

Data need to be transferred in chunked encoding (requires HTTP 1.1)

There's no always support for HTTP 1.1. (in clients, proxies, load balancers...)

Lessons learned

Supporting several projections for the data is vital.

For example many weather models are calculated in rotated lat-lon. Grids are often irregular

Lessons learned

There have to be some way for client to check if new data exists

Data is updated often but not regurarly

Lessons learned

It might be good idea to require some pub/sub functionalities in INSPIRE contexts

New standard but quite simple to implement

http://www.slideshare.net/tervo/ https://en.ilmatieteenlaitos.fi/open-data

www.fmi.fi

