

How Data Quality Automation Delivers Improved Productivity:

- Automation Drivers
- Automation v Spatial Data Quality
- Case study: United Utilities
- Case Study: US Census
- Approach to Data Quality

Drivers for Automation:

- Deliver more for less
- Consistent and Repeatable
- Measureable outcomes
- Real time data
- Complements our abilities

Automation v Spatial Data Quality

Automation Drivers:

- Real time data, greater currency
- Bulk data processing
- Derive new product, data on demand
- More analytics, enrich data
- Innovation in capture methods

Causes of Data Quality Issue:

- Repurposed
- Legacy data and legacy data conversions
- Historic conflation
- Manual capture, varying capture standards, capture hardware

Case Study: United Utilities

Repurpose ✓ Legacy Data ✓ Different capture standards ✓ Manual data entry ✓

- 76,000 km sewers, 42,000 km of clean water
- Inherited assets and records (data)
- Data incomplete and inconsistent
- Data maintained in multiple systems
- 400 field engineers with their copy of the network
- legislation changed responsibility for private sewers
- Goal: Accurate view of assets
- Reduce operational costs, and response times
- Improving customer service
- KPI's based on network length
- Estimating costs
- View of erroneous billing

Case Study: United Utilities

Repurpose√ Legacy Data ✓ Different capture standards ✓ Manual data entry ✓

- Data quality audit and data fix-up
- Inferred data for omissions/gaps
- Inference rules bases on:
 - Engineers knowledge
 - known network data (pipe age, pipe size, etc)
 - Topographic and Census
- Type and location of sewer inferred
- Inferred network infrastructure, calculated land parcel entry point
- Confidence rate on contextual information

Case Study: United Utilities

Repurpose√ Legacy Data ✓ Different capture standards ✓ Manual data entry ✓

Outcomes:

- Fully mapped private sewer stock
- Additional 6,000 km of private sewer stock identified
- Improved accurate deterioration models
- More accurate predictive maintenance plans
- Fully Connected assets inter-connect: reservoirs to pipes, drainage and sewers to treatment plants

Case Study: US Census

Repurpose ✓ Legacy Data ✓ Different capture standards ✓ Data Broker ✓

2010 Census:

- 135 million address
- 140,000 people to validate address records
- 600,000 people to trace non-respondents
- Cost = \$12 billion
- Goal: Accurate view of the geography
- \$400 billion of government spend dependent on census
- Streamline the integration of data from 3,200 agencies
- Deliver census data to government faster
- Reduce size of field validation task
- Reduce projected cost of 2020 census (\$17 billion)

Case Study: US Census

Repurpose ✓ Legacy Data ✓ Different capture standards ✓ Data Broker ✓

- Scrubbing
- Topology Health Check
- Fix Tolerance issues
- Change detection between Partner and Census datasets

Case Study: US Census

Repurpose ✓ Legacy Data ✓ Different capture standards ✓ Data Broker ✓

Outcomes:

- Improved data reduced field canvassing to 25% of 2010's 140,000
- Deliver census data to government faster
- Greater integration and analytics with commercial dataset (postal, roads)
- Improved data collection, base data and use of automation saving \$5 billion

Approach to Data Quality

- Data quality management system/strategy
- Automation of data validation
- Application independent
- Data validation at point of capture
- Centralised rules repository
- High performance/scalable
- Automatic correction
- Data transformation
- Pinpoint reporting
- Define what is correct
- Quality reporting, KPIs

