Improved Data Usability: From an analysis of the GML Data Specifications to Alternate Encodings

Thorsten Reitz, wetransform GmbH
Agenda

- Study for GDI-DE in 2017
 - How can we improve the default encoding to make INSPIRE Data more usable?

- Work for MIG 2017.2 on Alternate Encodings in 2018/2019
 - How can we use alternate encodings to make INSPIRE Data more usable?
 - What is the current state of data usability for GML and GeoJSON in the most important GIS tools?
Analysis of the INSPIRE GML Encoding

July to August 2018
The GDI-DE Analysis

Context:
- INSPIRE Fitness for Purpose discussions
- Timeframe: 4 weeks (April 2017)

Objectives:
- Determine concrete issues by use case with the current data specifications
 - Interoperability issues
 - Implementation issues
- Quantify issues and their impact where possible
- Suggest improvements, with a focus on the Technical Guidance
Methodology of the Analysis

The methodology consists of the following steps:

1. Define Use Cases
2. Analyse Schemas
3. Analyse Instances
4. Create Hypotheses
5. Test Hypotheses
6. Document Recommendations

- BU-core*d
- sd
- ef
- us-*
- nz
Use Cases

- Data Management (what problems does this pattern solve for data management in a relational database?)
- Data Exchange
- Data Portrayal
- Data Harmonization
- Data Analysis in a Desktop GIS
- Data Publishing through View Services
- Data Publishing through Download Services
Schema and Data Analysis

- element depth
- use of base types
- reference types
- use of choices and substitutions constructs
- statistics of property type and occurrences
- statistics of frequently used concepts like Voidable, UnitOfMeasure
- statistics on geometry properties usage
- Schema coverage through known data sets

... and more would be possible.
Tools used: Agile Standardisation in hale connect

- Model-driven
 - No Schema Language Mismatches between steps
- Data-driven
 - Inform every step with real-world data
- Usage-driven
 - Instantly validate data fitness-for-purpose
- Collaboration
 - Versioning, Forking
 - Comments, Tasks, Notes
Schema Analysis: Example
Identified Problems by Use Case

Data Management
- OO vs. Layers
- OO vs. RDBMS/ODBMS

Data Exchange
- Resolution of file-external references
- Support for dataset fragments

Data Portrayal
- Nested properties
- Code list references
- Complex geometry model (Building)
- leastDetailedViewingResolution

Data Harmonisation
- Missing Codelists
- Semantic mismatches (classification)
- Semantic ambiguity
- Networks/Topologies

Data Analysis
- Complex attribute structures
- Multiple geometries per „layer“

Data Publishing
- GetFeatureInfo and complex schemas
- Some geometries and constructs not supported
(Some) Recommendations

- Flatten some structures where cardinality is usually 1
- Simplify attributes representing measures and remove obligation to provide `UnitOfMeasure` for attributes that are `Voidable`
- Simplify `xs:choice` elements in data models
- Reduce use of substitution groups
- Avoid features with multiple geometry attributes
- Provide middleware to support alternative encodings
- Provide code list references in XML Application Schemas
- Provide alternative data models for View Services
- Use alternative logical models for specific elements
- Use alternative/additional encodings
Conclusions

– Medium to high degree of complexity in INSPIRE schemas comes from multiple sources:
 – The structure reflects the thematic structure of the real-world features behind.
 – The specifications reuse existing standards.
 – The data models are object-oriented and were created using an MDA approach.

– Comparison to other national or international standards shows that overall complexity is in line with expectations

– XML schema is still the only established mainstream technology for a formal definition of data exchange formats
 – Significant tooling available
Easy INSPIRE Extensions

- Touch-friendly View
 - Based on UML Model
- Recommendation Engine
- Easy re-use of components of other schemas/models
- Supports subset of UML/XSD concepts
 - Classes, Choices, Enumerations
 - Interhitance, Aggregation, Reference
Work on Alternate Encodings (GeoJSON)

November 2018 to June 2019
Outline for an Alternate Encoding

- **Scope**
 - Use Cases
 - INSPIRE Themes
 - Cross-cutting INSPIRE requirements
- **General Encoding Rules**
- **Conformance Classes**
- **Mapping to the Default encoding**
- **ATS/ETS, Examples**

- Optional: Model Transformations (for Simplification, Flattening)
How can the encoding be used?

Can I use ___________________? 🌟 Settings

CSS Grid Layout 🌟 - CR

Method of using a grid concept to lay out content, providing a mechanism for authors to divide available space for layout into columns and rows using a set of predictable sizing behaviors. Includes support for all grid-* properties and the fr unit.

<table>
<thead>
<tr>
<th>Current aligned</th>
<th>Usage relative</th>
<th>Date relative</th>
<th>Apply filters</th>
<th>Show all</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE</td>
<td>Edge</td>
<td>Firefox</td>
<td>Chrome</td>
<td>Safari</td>
</tr>
<tr>
<td>6-9</td>
<td>12-15</td>
<td>4-28</td>
<td>2-39</td>
<td>40-51</td>
</tr>
<tr>
<td>10</td>
<td>16-17</td>
<td>52-53</td>
<td>57</td>
<td>31-10</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>63</td>
<td>64-65</td>
<td>70</td>
</tr>
</tbody>
</table>

Usage

Global: 85.36% + 2.93% = 88.3%
unprefixed: 85.36%
What to optimize the encoding for?

- What general and/or domain specific use case(s) was the encoding in the example developed for?
- Usability in current applications
- What INSPIRE themes would it be suitable for?
- Which specific technical problems does this encoding solve?
- Which INSPIRE general encoding and data specification requirements does it address?
 - Should the encoding be applicable to all themes, including those that use 3D geometries, coverages/TINs, Topologies, ...?
- What clients or other software was this encoding tested with? What were the results?
Questions? Feedback?
+49 6151 155 408

info@wetransform.to
www.wetransform.to

www.linkedin.com/company/wetransform-gmbh
https://twitter.com/tr_xsdi