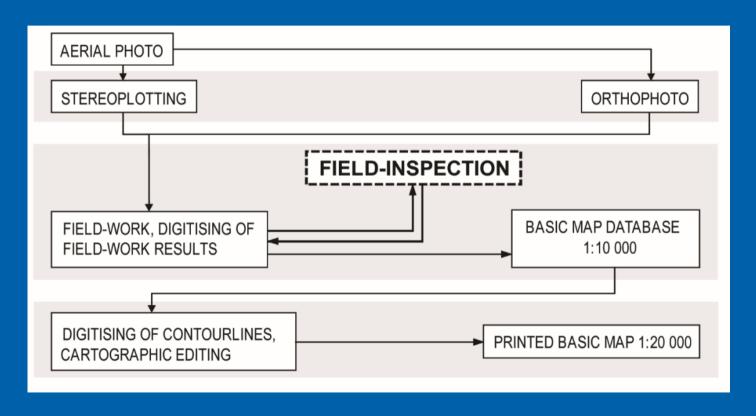

Thematic accuracy and completeness of topographic maps

Kiira Mõisja

Department of Geography, University of Tartu

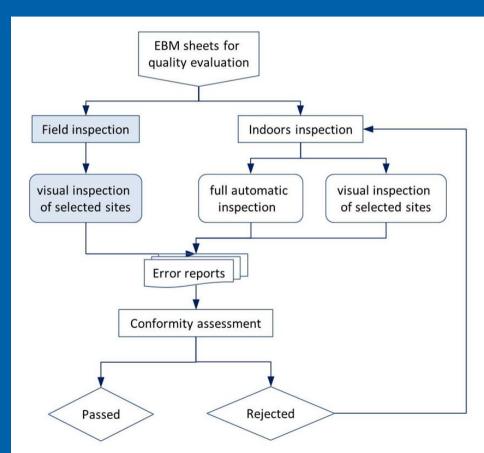
Background

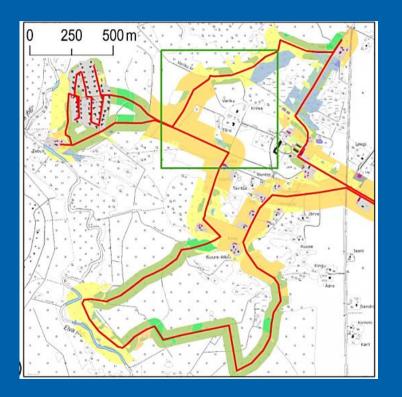


Soviet military map 1:25 000

Estonian Basic Map printed 1:20 000

(in digital 1:10 000)


Background

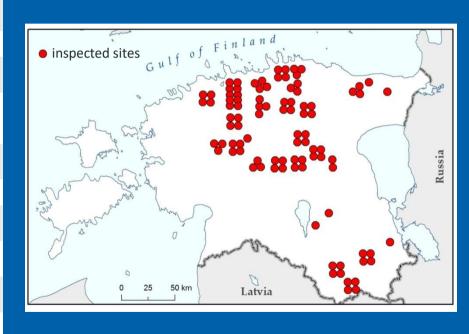

Quality control process

- Field inspection
 - classification correctness of features
 - omission of features
 - commission of features
 - wrong place
 - o wrong size

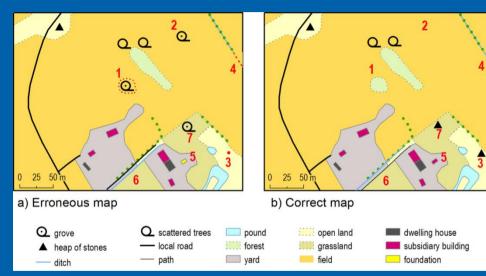
Quality control process

- Determination of field inspection area
 - 100 m in open area
 - o 50 m in closed area

Quality control process


- Error reports of field inspection
- 6 field inspectors of Estonian
 Land Board

Unique data of field inspection


CHARACTERISTIC	VALUE
Quality control period	2003–2006
Number of field inspectors	6
Number of inspected field workers	21
Field workers' gender	6 female, 15 male
Field workers' years of experience	2–11 years
Number of inspected sites	93
Total length of inspection routes	1 455 km
Length of inspection routes	11–15 km
Total area of inspected sites	159 km ²
Minimum area mapped by one field worker	¼ of map sheet

Error database

- In total 5100 errors
- Harmonization of error types
 - o points can have all error types
 - lines can have all error types, except
 wrong size and wrong place
 - o polygons could only misclassified
 - in case of change of geometry type,
 the point or line is recorded as an error
 of commission and polygon as a
 misclassification

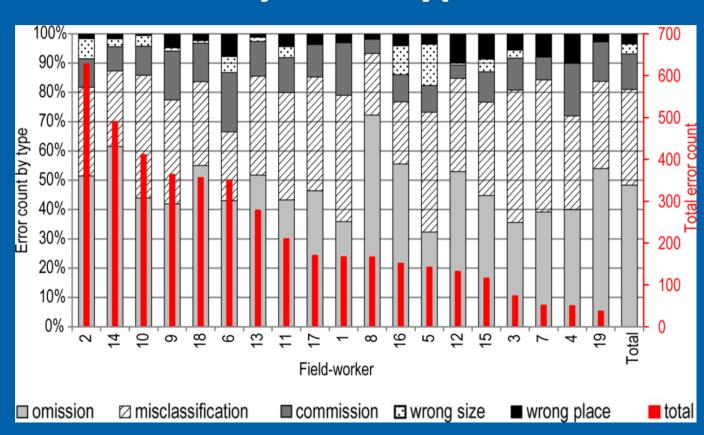
Some theoretical anchor points

About quality

- Data quality could be analyzed and presented at more detailed levels of granularity (Hunter et al. 2009, Devillers et al. 2010)
- Data quality can vary spatially (Sadiq et al. 2006)

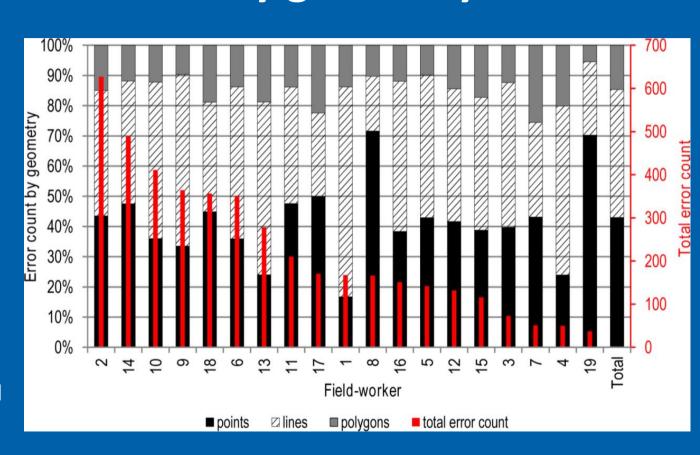
About human factor

- Fieldworkers interpret the landscape subjectively (Cherrill and McClean, 1999; Stevens et al., 2004)
- Increasing years of experience and experience with mapping certain landscape types improved mapping quality (Hearn et al. 2011)
- Men and women interpret spaces differently (Coluccia and Louse 2004, Lawton 1994, Matthews 1986)


Error analyses

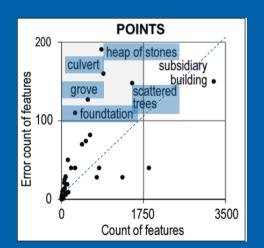
- Two levels of granularity
 - in general level (whole database)
 - in detailed level (by individual field worker)
- Quality measure calculation

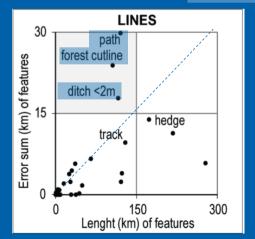
ANALYSIS	MEASURE	DEFINITION	
Type of errors		arrowsh are of in a course to the man	
Geometry of errors	error count	number of incorrect items	
Feature classes of errors	error sum	total: number of incorrect points length of incorrect lines area of incorrect polygons	
Most misclassified feature class			
Differences in errors among filed worker by gender and years of experience	error rate	total number, length or area of erroneous items in a geometrical type divided by the total number, length or area of	
Differences in errors among filed worker by landscape types		items in that geometrical type and multiplied by 100	

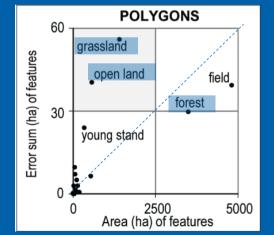

The structure of errors by error types

- In general:
 - 48% omission,
 - 33% misclassification
- In detail:
 - Variation among field workers

The structure of errors by geometry

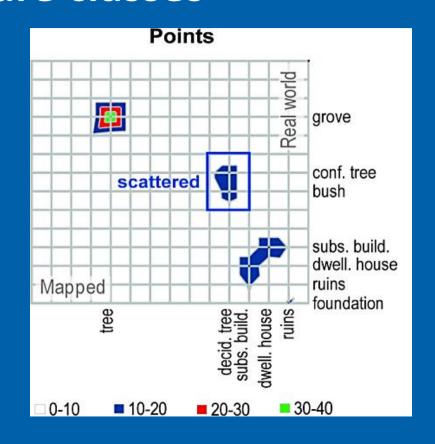

- In general:
 - 46% lines
 - 40% points
 - 14% polygons
- By field workers:
 - more errors in line objects
 - more errors in point objects
 - similar to the general database

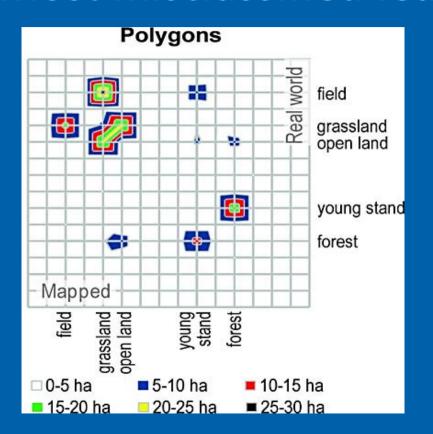


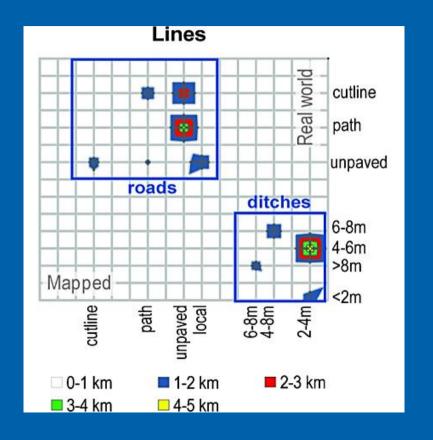

Most critical feature classes

- At both level of granularity
 - o frequently missing
 - mostly misclassified
 - o tended to be committed in excess

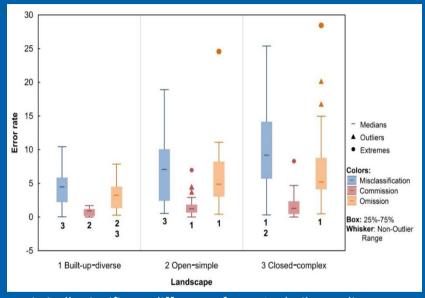
- Only at field worker's level
 - o misclassification of forest
- Only for few field workers
 - o misclassification of narrow ditch <2m</p>
 - misclassification of grassland






Most misclassified feature classes

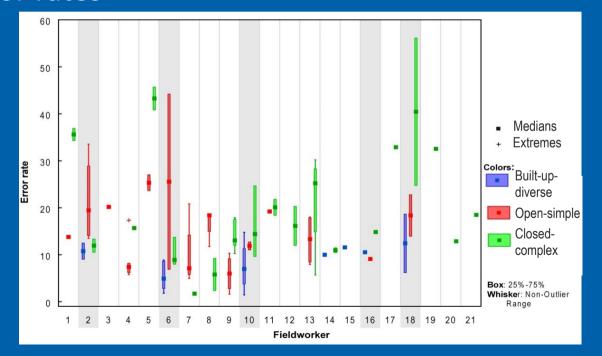
- "Neighbouring" each other
- Symbol of grove in stereoplotting <a>O <a>O
- Path in a higher class, ditch in lower class
- Field grassland open land
- Young stand forest


Most misclassified feature classes

Errors in different landscapes

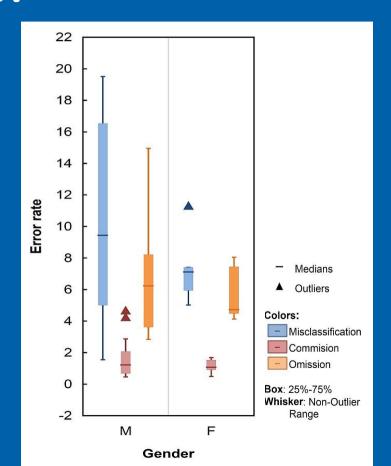
- Statistically significant difference in landscapes
- Relatively low in built-up landscapes
- More errors in closedcomplex landscapes than in open-simple landscapes

statistically significant difference from: 1 – built-up-diverse landscape type, 2 – open-simple landscape type, 3 – closed-complex landscape type

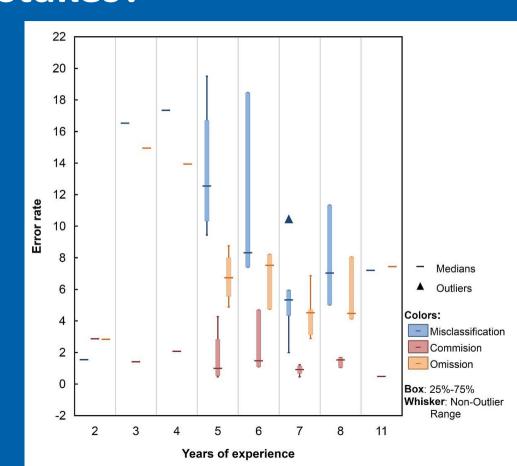


Errors in different landscapes

 By field workers - within the landscape type large variation in error rates



Who makes more mistakes?


- Uneven distribution of field workers
- No statistically significant differences in gender

Who makes more mistakes?

- Differences in the years of experience
 - decreasing trend
 - o not significantly correlated

Conclusions

- Differences at the general and field workers' level.
- The most critical feature classes: heap of stones, relict foundation, scattered trees, path, forest cutline, grove, and open land
- Less errors in built-up diverse and more errors in closed – complex landscapes
- Years of experience has a positive trend, gender did not have an influence on data quality
- To improve the mapping quality:
 - o possibility to choose landscape
 - monitoring and training the field workers
 - o if necessary, to revise map specification

References 1

- Devillers, R., Stein, A. R., Bedard, Y., Chrisman, N., Fisher, P., & Shi, W. (2010). Thirty years of research on spatial data quality: Achievements, failures and opportunities. Transactions in GIS, 14, 387–400.
- Hunter, G. J., Bregt, A. K., Heuvelink, G. B. M., de Bruin, S., & Virrantaus, K. (2009). Spatial data quality:
 Problems and prospects. In G. Navratil (Ed.), Research trends in geographic information science (pp. 101–121).
 Berlin, Germany: Springer Lecture Notes in Geoinformation & Cartography.
- Sadiq, M. Z., Duckham, M., & Hunter, G. J. (2006). Modeling spatial variation in data quality using linear referencing. In Proceedings of the 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Science (pp. 225-235). Lisbon, Portugal: ISARA.
- Cherrill, A., & McClean, C. (1999). Between-observer variation in the application of a standard method of habitat mapping by environmental consultants in the UK. Journal of Applied Ecology, 36, 989–1008.

References 2

- Stevens, J. P., Blackstock, T. H., Howe, E. A., & Stevens, D. P. (2004). Repeatability of Phase 1 habitat survey. Journal of Environmental Management, 73, 53 –59
- Hearn, S.M., Healey, J.R., McDonald, M.A., Turner, A.J., Wong, J.L.G., Stewart, G.B. (2011). The repeatability of vegetation classification and mapping. Journal of Environmental Management. 92, 1174–1184
- Lawton, C.A. (1994). Gender differences in way-finding strategies: Relationship to spatial ability and spatial anxiety. Sex Roles, 30, 765–779
- Coluccia, E., Louse, G. (2004). Gender differences in spatial orientation: A review. J. Environ. Psychol., 24, 329–340
- Matthews, M.H. (1986) The influence of gender on the environmental cognition of young boys and girls. J. Genet. Psychol., 147, 295–302

Thank you for your attention!

