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• Actueel Hoogtemodel Nederland
• Rijkswaterstaat, water boards, and provinces
• Point density 1 point / 16 m2

• 2.5 billion points
• Systematic height error 10 cm
• Stochastic height error 15 cm
• Classification in ground / non-ground
• Government and companies learned a lot…

NATIONAL HEIGHT MODEL AHN (1997-2004)
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• Rijkswaterstaat and water boards
• Point density 8-10 point / m2

• 640 billion points
• Systematic height error 5 cm
• Stochastic height error 5 cm
• Classification in ground / non-ground

NATIONAL HEIGHT MODEL AHN2 (2007-2012)
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• Rijkswaterstaat, water boards, and provinces
• Unchanged geometric quality specifications
• Classification in

• Ground
• Building
• Water
• Civil structure (bridges, fly-overs)
• Other

• Most companies use TerraScan
• TIN densification (Peter Axelsson)
• Point grouping, classification trees

NATIONAL HEIGHT MODEL AHN3 (2014-2019)
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• Unchanged geometric quality specifications
• Same classes, but more pragmatic choices

• Accept classification errors
• Modified class definitions
• Smart labelling approaches

• Classification takes 20-25% of the project costs

NATIONAL HEIGHT MODEL AHN4 (2020-2022)
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• Ground: No more than 1 hectare per 10,000 hectare classified as non-ground
• Building: No more than 1 building (> 10 m2) per 1,000 hectares classified as ground
• Building: No more than 1 out of 100 buildings misclassified
• Civil structures: No more than 1 object per 1,000 hectares classified as ground
• Civil structures: No more than 2 out of 100 civil structures misclassified
• Water: No more than 1 object per 10,000 hectares misclassified
• Etc. 

ACCEPT CLASSIFICATION ERRORS
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• Silage heaps now part of ground

MODIFIED CLASS DEFINITIONS

Source: www.melkvee.nl
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• Silage heaps now part of ground
• Boat dock if parallel to shoreline now 

accepted as ground

MODIFIED CLASS DEFINITIONS

Source: www.hoveniersbedrijf-richard.nl/
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• Infer labels from topographic maps
• Used for buildings and water
• Buildings not in the map should be

classified as “other”
• No simple point-in-polygon check

SMART LABELLING APPROACHES

Source: PDOK 9(Wang et al, 2016)



• Infer labels from topographic maps
• Used for buildings and water
• Buildings not in the map should be

classified as “other”
• No simple point-in-polygon check

• Infer labels from previous AHN version
• Copy label from nearby point of previous AHN
• Only changed locations are to be classified

and checked

SMART LABELLING APPROACHES
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DEEP LEARNING FOR POINT CLOUD CLASSIFICATION
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Institute of Photogrammetry and GeoInformation 12

What‘s Different in Deep Learning?
• Machine Learning, classical approach:

• Deep Learning: Joint learning of features and classification model

– “End-to-end learning“, based on artificial neural networks (ANN)

Machine Learning, 
Classification

Compute cleverly 
defined “hand-

crafted” features 
Input f1 … fn Output

f1

f 2

performance only as good as feature set 

OutputFeature extractionInput classification

Deep Learning

Franz Rottensteiner



Convolutional Neural Networks are made for raster data processing

Work-arounds
• Convert point cloud to raster, use Zmean, Zmax, Zmin instead of

RGB values (Hu and Yuan, 2016)

CLASSIFICATION OF RASTERIZED POINT CLOUDS
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Convolutional Neural Networks made for raster data processing

Work-arounds
• Convert point cloud to raster, use Zmean, Zmax, Zmin instead of 

RGB values (Hu and Yuan, 2016)
• Convert to multi-view rasters (SnapNet, Boulch et al, 2017)

CLASSIFICATION OF RASTERIZED POINT CLOUDS
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Convolutional Neural Networks made for raster data processing

Work-arounds
• Convert point cloud to raster, use Zmean, Zmax, Zmin instead of

RGB values (Hu and Yuan, 2016)
• Convert to multi-view rasters (SnapNet, Boulch et al, 2017)
• Convert to 3D raster (VoxNet, Maturana and Scherer, 2015)

CLASSIFICATION OF RASTERIZED POINT CLOUDS

15



PointNet (Qi et al., 2017)
Learning affine transformation of a point cloud and features
Multi-layer perceptrons (MLP)
Networks for classifying the whole point cloud and labelling each point

DEEP LEARNING FOR POINT CLOUD CLASSIFICATION
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PointNet++ (Qi et al., 2018)
Hierarchical application of PointNet to capture more global point cloud structure

DEEP LEARNING FOR POINT CLOUD CLASSIFICATION
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SuperPointGraphs (Landrieu and Simonovsky, 2018)
Segmentation of point cloud into segments (called superpoints) 
Extract features for superpoints using PointNet
Contextual classification of superpoints by interative use of gated recurrent units

DEEP LEARNING FOR POINT CLOUD CLASSIFICATION
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KPConv (Thomas et al., 2019)
Convolution at kernel points
Learnable kernel point locations

CONVOLUTIONS ON POINT CLOUDS
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LOT OF ONGOING RESEARCH ON POINT CLOUD CLASSIFICATION

20

Segmentation of unbalanced and in-homogeneous point clouds and its 
application to 3D scanned trees 
J Morel, A Bac, T Kanai - The Visual Computer, 2020 

Two-Stage Point Cloud Super Resolution with Local Interpolation and 
Readjustment via Outer-Product Neural Network 
G Wang, G Xu, Q Wu, X Wu - Journal of Systems Science and Complexity, 2020 

A geometry-attentional network for ALS point cloud classification 
W Li, FD Wang, GS Xia - ISPRS Journal of Photogrammetry and Remote …, 2020 

[PDF] LightConvPoint: convolution for points 
A Boulch, G Puy, R Marlet - arXiv preprint arXiv:2004.04462, 2020 

SqueezeSegV3: Spatially-Adaptive Convolution for Efficient Point-Cloud 
Segmentation 
C Xu, B Wu, Z Wang, W Zhan, P Vajda, K Keutzer… - arXiv preprint arXiv …, 2020 

[PDF] Road Mapping In LiDAR Images Using A Joint-Task Dense Dilated 
Convolutions Merging Network 
Q Liu, M Kampffmeyer, R Jenssen, AB Salberg - arXiv preprint arXiv:1909.04588, 2019 

An Adaptive Filter for Deep Learning Networks on Large-Scale Point Cloud 
W Zhao, R Yi, YJ Liu - 2019 IEEE International Conference on Image …, 2019 

PFCN: A Fully Convolutional Network for Point Cloud Semantic Segmentation 
J Lu, T Liu, M Luo, H Cheng, K Zhang - Electronics Letters, 2019 

[PDF] LU-Net: A Simple Approach to 3D LiDAR Point Cloud Semantic 
Segmentation 
P Biasutti, V Lepetit, M Brédif, JF Aujol, A Bugeau - 2019 

[PDF] ShellNet: Efficient Point Cloud Convolutional Neural Networks using 
Concentric Shells Statistics 
Z Zhang, BS Hua, SK Yeung - arXiv preprint arXiv:1908.06295, 2019 



KPConv (Thomas et al., 2019) uses 3D kernels

OPTIMIZING KPCONV – ADDING 2D CONVOLUTIONS
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KPConv - 3D point convolutions

Hybrid KPConv - Combining 3D and 2D point convolutions

OPTIMIZING KPCONV – ADDING 2D CONVOLUTIONS
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SuperPointGraphs - Classification of segments

Adding segment-based edge-conditioned convolution (Seg-ECC)

OPTIMIZING KPCONV – ADDING SEGMENT INFORMATION
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Combining all elements and adding spatial and channel attention modules

OPTIMIZING KPCONV
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Combining all elements and adding spatial and channel attention modules

OPTIMIZING KPCONV – RESULTS ON ISPRS BENCHMARK
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KPConv 0.735 0.787 0.880 0.794 0.330 0.942 0.613 0.457 0.820 0.706 0.817
Hybrid 0.703 0.811 0.908 0.757 0.381 0.939 0.632 0.495 0.826 0.717 0.837

Av. F1    OA

(Lin et al., 2020b)



Deep learning networks contain millions of parameters
Benchmark datasets increase in size

Benchmark datasets needed (mail to Yaping with dataset characteristics)

NEED FOR TRAINING DATA
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(Hu et al., 2020)



Transferring of map labels to point clouds

Smart selection of additional training samples
• Focus on areas with largest label uncertainty

Minimize required amount of training data
• Active learning

• Retrain from scratch with increased training data
• Incremental learning

• Updating old model with a mix of old and additional 
training data

• Reduced time required for training (Lin et al., 2020a)

LEARNING STRATEGIES
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Classification of nationwide point clouds
• Doable, but be pragmatic

Deep learning for point cloud classification
• Not yet used by companies involved in

the Dutch national point cloud acquisition
• Very active research field
• Need for manual editing will be reduced, 

but not eliminated
• Classification costs will be reduced

CONCLUSIONS
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