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What is Artificial Intelligence? 

• Oxford English Dictionary (https://www.oed.com/):

“The capacity of computers or other machines to exhibit or 

simulate intelligent behaviour.”

• Very broad field, including 

− Perception (visual / speech / …)

− Decision making, planning

• Often associated with Machine Learning, but: AI is broader

• Colloquially, “AI“ refers to applications of (deep) neural networks 

(deep learning) for complex tasks 

• Relevance for NMCAs: Automation of mapping processes from 

remote sensing data based on deep learning

https://www.oed.com/
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Artificial Intelligence vs. Deep Learning

• Deep learning: one specific but very powerful strategy of AI

Artificial Intelligence (AI)

Machine Learning

Deep 
Learning

adapted from [Goodfellow et al., 2016]
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What‘s Different in Deep Learning?

• Machine Learning, classical approach:

• Deep Learning: Joint learning of features and classification model

– “End-to-end learning“, based on artificial neural networks (ANN)

Machine Learning, 

Classification

Compute cleverly 

defined “hand-

crafted” features 

Input
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Output
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f 2

performance only as good as feature set 

OutputFeature extractionInput classification

Deep Learning
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Development of Deep Learning

• Cybernetics (Perceptron)

– f: step function; linear decision boundary

[McCulloch & Pitts, 1943] 

[Rosenblatt, 1958]

• ANN, Multi-layer Perceptron (MLP)

– f: sigmoid/tanh; non-linear decision b.

– back propagation for training 

[Rumelhart et al., 1986] 

• Deep learning: learn representation (features)

– Fast hardware (GPU), vast amount of training data (ILSVRC) 

– Minor algorithmic changes, e.g. ReLu activations for f

– LeNet-1 [LeCun et al., 1989]; AlexNet [Krizhevsky et al., 2012]
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Convolutional Neural Networks (CNN):  

Components
• Convolutional Layers

• (max-)pooling

• activation function
e.g. ReLU(x) =

max(0,x)

7 59 8
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0 47 3

8 66 2
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• For regularly structured data

• Repeated execution of those steps 

based on “some“ architecture

• Training: determine filter coefficients 

by minimizing a loss function

• Classification: one label per patch

Input image             Convolution       Pooling       Convolution    Pooling      fully connected

64 x 64 → 1D vector

Softmax

Classifier
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• The depth of CNN has increased considerably over time

• ILSVRC:  number of layers and top-5 errors for image classification 

(one label per image)

CNN and Depth

2010                 2011                  2012                2013                 2014                 2014                2015

AlexNet                                       VGG             GoogLeNet      ResNet

[Krizhevsky [Simonyan &          [Szegedy            [He et al.,

et al., 2012]                           Zisserman,           et al., 2015]          2015]

2015]

3.6%
6.7%7.3%

11.7%

16.4%

25.8%

28.2%

shallow networks 8 layers 8 layers

19 layers 22 layers

152 layers

adapted from [Fei-Fei et al., 2020]
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Classification (CV Terminology), Examples
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© [Long et al., 2015]

• Fully convolutional network (FCN) [Long et al., 2015]:

– Apply convolutions and pooling to entire images

→ representation at reduced resolution

– Upsampling for pixelwise predictions

• Encoder-Decoder networks, e.g. U-Net [Ronneberger et al.,2015]:

– Symmetrical structure of downsampling and upsampling layers

Pixel-wise classification: FCN
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Example: Land Cover Classification

• Goal: assign a class label to every pixel of the input data

• Land cover: material / type of the object “seen” by the sensor

− Examples: building, grass, tree, 

asphalt, car

• Input: remote sensing data, e.g.

− Aerial / satellite images

− Digital surface models (DSM)
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• CNN for aerial imagery (20 cm GSD), DSM [Yang et al., 2020a]

• Overall accuracy: ~85%-90%

CNN for Land Cover Classification 

EN-CB1 EN-CB2 EN-CB3 EN-CB4

DE-CB4 DE-CB3 DE-CB2
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Input 1:
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skip connections

3 x 3 conv. 

block (CB)
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fusion 1 x 1 

convolution

softmax

class

labels



Institute of Photogrammetry and GeoInformation 15

Example: Land Use Classification for

Database Verification

• Goal: predict land use for every polygon of an existing database

− Examples: residential, park, traffic

• Input: 

− Image and height data 

− Pixel-wise land cover information

• Problem: Very detailed object catalogues (> 150 classes!)

→ Predict class labels at multiple semantic levels 

→ Enforce consistency with the hierarchical catalogue 
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Hierarchical Land Use Classification

• Land Use Network [Yang et al., 2020b]

• Overall Accuracy: 92% (4 cl.)  /  77% (13 cl.)  /  73% (21 cl.) 
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Deep Learning in Remote Sensing: Problems 

and Potential Solutions
• Imbalanced class distribution in the training samples

− Adapt loss functions [Yang et al., 2018, 2020a]

• Structure of object catalogues

− Reconsider class structures and make “pragmatic choices”  

(© George Vosselman) to simplify automation 

• Shortage of training samples

− Data augmentation: use synthetic samples [Wittich, 2020]

− Domain adaptation: use training samples from another domain 

(e.g. other regions) [Tuia et al., 2016; Wittich, 2020]

− Use existing map for training: classifier has to cope with label 

noise [Maas et al., 2018, 2019; Voelsen et al., 2002]
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• Land Cover classification based on Sentinel-2 (GSD: 10 m),

based on [Voelsen et al., 2020]

• Data covering the entire state of Lower

Saxony (47,600 km2) at 10 m

– 14 epochs (different seasons) 

– Class labels from the German 

landscape model (6 classes)

• Estimated level of label noise: 8%

• Preliminary results: 

− Overall accuracy: 90% 

− Hardly any impact of label noise IF all epochs are used

Example: Training Based on Existing Map

Training

Validation

Testing
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• Deep Learning for automating the update process of geospatial 

databases! 

• Deep learning has been adapted for such applications in our 

domain for some time [Zhu et al., 2017]

– It has outperformed just about all classical algorithms by a large 

margin, provided enough training data are available

– Strength: learning features, classifier not so important

– Key to good performance: network depth

• Consider techniques to reduce the requirements w.r.t. training data

• Current work focusses on classification only;  hardly any work on 

vectorization

Artificial Intelligence for NMCAs? 
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