

Applications of Al in urban data spaces - the USAGE EU project -

Fabio Remondino, Raniero Beber Bruno Kessler Foundation (FBK) - 3D Optical Metrology (3DOM) unit <remondino><rbeber>@fbk.eu https://3dom.fbk.eu

and contributions from the entire USAGE EU project

The EU USAGE project (2022-2025)

- Urban Data Space for Green Deal
- Call HORIZON-CL6-2021-GOVERNANCE-01-17 (IA)
- Support the implementation of the EU strategy for data and European Green Deal priority actions fostering the use of geospatial data and AI solutions
- 4 pilot cities: Ferrara (Italy), Graz (Austria), Leuven (Belgium), Zaragoza (Spain)
- https://www.usage-project.eu/

AIwhat?

- Artificial Intelligence or Absence of Intelligence?
- Sometimes used as a **Black Box**, sometimes you get lost into the **Black Box**
- Lack of explainability, replicability and generalization
- We need to move towards an Intelligent use of AI

Applications of AI in urban data spaces - the USAGE EU project

Al for geospatial data

- Dream: extract meaningful information (2D or 3D) from geodata better and faster than humans
- <u>Current</u>: for radiometric data still not faster than human but for geometric data machines / algorithms are almost unbeatable

Al for geospatial data

- Image colorization
- Image segmentation / classification
- Tie points extraction / Image triangulation
- 3D reconstruction (monocular, stereo/MVS, NeRF)
- DSM inpainting / editing / cleaning / super-resolution
- Point cloud segmentation / classification
- Orthophoto correction
- Photovoltaic panel identification / counting
- Urban heat island prediction
- Detection of building footprints
- Tree identification / counting
- etc.

Al for image colorization

- Historical aerial images: Al to restore colors and improve interpretation and understanding
- Hyper-U-NET (<u>https://github.com/3DOM-FBK/Hyper_U_Net</u>)

[Farella, E.M., Malek, S., Remondino, F., 2022: Colorizing the past: Deep learning for the automatic colorization of historical aerial images. Imaging, 8, 269]

Al for image colorization

- Historical aerial images: AI to restore colors and improve interpretation and understanding
- Hyper-U-NET (<u>https://github.com/3DOM-FBK/Hyper_U_Net</u>)

[Farella, E.M., Malek, S., Remondino, F., 2022: Colorizing the past: Deep learning for the automatic colorization of historical aerial images. Imaging, 8, 269]

Applications of AI in urban data spaces - the USAGE EU project

Al for Multi-View Stereo (MVS) 3D reconstruction

Learning-based MVS methods complementary (?) to conventional approaches

UAV

LIDAR GT

MVSFormer

[Nex, F., Zhang, N., Remondino, F., Farella, E.M., Qin, R., Zhang, C., 2023. Benchmarking the extraction of 3D geometry from UAV images with deep learning methods. ISPRS Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1/W3-2023.]

MVSFormer Unimvs Conventional

JSAGE Irban Data Space or Green Dea

Applications of AI in urban data

Unimvs

Conventional (SGM)

Mean Absolute Error (m)	Completeness (%)
0.48	98
0.485	97
0.35	94 page 8

Al for point cloud segmentation / classification (1/2)

- Lack of generalization
- No standards in classes definition

Name	Reference	Year	Classes	Points (mil)	Spatial Size (m ²)	RGB	Sensor
ISPRS	Niemeyer et al. (2014)	2012	9	1.2	1.6 x 10 ⁵	No	ALS / LiDAR
DublinCity	Zolanvari et al. (2019)	2019	13	260	2 x 10 ⁶	No	ALS / LiDAR
DALES	Varney et al. (2020)	2020	8 (9)	505	10 x 10 ⁶	No	ALS / LiDAR
LASDU	Ye et al. (2020)	2020	5	3.12	1.02 x 10 ⁶	No	ALS / LiDAR
Campus3D	Li et al. (2020)	2020	24	937	1.58 x 10 ⁶	Yes	UAV Photo
SensatUrban	Hu et al. (2022)	2020	13 (31)	2847	7.64 x 10 ⁶	Yes	UAV Photo
Swiss3DCities	Can et al. (2021)	2021	5	226	2.7 x 10 ⁶	Yes	UAV Photo
Hessigheim 3D	Kölle et al. (2021)	2021	11	73	8 x 10 ⁴	Yes	UAV LiDAR
STPLS3D	Chen et al. (2022)	2022	6 (18)	-	6 x 10 ⁶	Yes	Synthetic + UAV Photo
HRHD-HK	Li et al. (2023)	2023	7	273	9 x 10 ⁶	Yes	UAV Photo

Al for point cloud segmentation / classification (2/2)

- Lack of generalization
- No standards in classes definition (task force for NMCAs?)

		ground	roof	facade	water	high /egetation	medium /egetation	low /egetation	noise	Bridge structure	Bridge deck	viaducts	pylons and cables	powerline	car	fence
	AHN4								celete l							
Netherlands	AHN3								celete l				1			
Poland	ISOK															
	Other															
Switzerland	Surface3D		r						aelete l							
France	1 <u> </u>								delete l							
Austria	Vienna		L													

[Walicka, A., Pfeifer, 2023: Classification of point clouds for transnational data. EuroSDR Workshop on Point Cloud Processing, Stuttgart, Jan 2023]

Al for solar panel identification (1/2)

• Identification of existing solar panels to better estimate PV potential of buildings / ground

Al for solar panel identification (2/2)

• U-net-like network for panel identification

Urban Data Space for Green Deal

Applications of AI in urban data spaces - the USAGE EU project

upscaled to 6,000 sqkm

Jan - A - a

Al for geospatial data within USAGE pilot activities

- Image colorization
- Image segmentation / classification
- Tie points extraction / Image triangulation
- 3D reconstruction (monocular, stereo/MVS, NeRF)
- DSM inpainting / editing / cleaning / super-resolution
- Point cloud segmentation / classification
- Orthophoto correction
- Photovoltaic panel identification / counting
- Urban heat island prediction
- Detection of building footprints
- Tree identification / counting
- etc.

Al within USAGE pilot activities: image classification

- Hyperspectral images (AVT): 1m, 364 bands, VNIR and SWIR (0,4 2,5 μm) [AisaFENIX384 by Specim]
- Al-based supervised classification
- 26 classes Shadow Unclassified Shadow Water Shadow Vegetatio Shadow Urban al classification Ferrar Black hitum Cement Gravel White sheath Paved Solar pane Pornhyn Red clay cour Glass Sand Soil mixed vegetation Bare soil Grass Low vegetation High vegetation

[Beber et al.,, 2023. Multi-modal geospatial and thematic data to foster green deal applications. ISPRS Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1/W3-2023.]

Al within USAGE pilot activities: <u>urban heat island prediction</u>

- What: Air temperature play an role essential in UHI prediction but is measured in <u>few location</u> (i.e. red dots)
- With: land cover properties, buildings morphology, detail volumes vegetation and satellite optical & thermal images
- **To:** City & neighborhood level Comfort index & heat wave intensity <u>prediction</u> <u>48h</u> <u>ahead</u>.

JSAGE

Jrban Data Spac

12-08-2022

Fusion of <u>weather stations</u> time-dense & **spatially sparse** data with resolute (30-70m) <u>LST satellite</u> data that are **time sparse**

Applications of AI in urban data spaces - the USAGE EU project

28-08-2022

13-09-2022

Al within USAGE pilot activities: urban heat island prediction

Al within USAGE pilot activities: building footprints detection

- Unet-like method
- Ferrara results

color-coded ITS results from airborne LiDAR on Ferrara

• GIS-based viz of ITS results from airborne LiDAR on Ferrara

Applications of AI in urban data spaces - the USAGE EU project

11/1	Ident	tify Re	sults					ð
		B	Ef		-0	1		
Ser	Featu	ıre				Valu	Je	
	- F	errar	a_tr	ee cr	rowns			
Station		- Tit	le					
		►	(De	rivec	i)			
		►	(Ac	tions	;)			
and the second			Tre	e ID		65		
1.00			Hei	ght		8,4	1087	72
and the second second			Cro	wn A	rea	39	,869	14(
FF. SAN								

• GIS-based viz of ITS results from airborne LiDAR + hyperspectral images on Ferrara

Urban Data Spa for Green Deal

USA

Applications of AI in urban data spaces - the USAGE EU project

• GIS-based viz of ITS results from airborne LiDAR + hyperspectral images on Ferrara

for Green Deal

Applications of AI in urban data spaces - the USAGE EU project

Take away messages

- Al methods are surely boosting many tasks in geospatial data processing pipelines • Al still suffers when dealing with large image resolutions and point clouds
- Al should not replace traditional (geometric) methods but should support them in order to speed up processes and improve results (<u>complementarity</u>)
- In the mapping field, the great variety of datasets from different sensor types (terrestrial, multi-head aerial cameras, multi/hyperspectral images, LiDAR, SAR, etc.) and scales (terrestrial, UAV, aerial, satellite), leads to poor availability of training / labelled samples
- Al methods are rapidly changing but lack of generalization, hence it is important for us to have our feet grounded and use common sense, while selecting these technologies

Take away messages

- Al will offer more valuable solutions for the geospatial field in the near future, inspiring and impacting research in our field through collaboration with colleagues in neighboring disciplines
- NMCAs are carefully monitoring new Al-based solutions and gradually adopting them as their potential is huge
- For sure, fully automated general image understanding and geometric processing remain an elusive problem for many years to come

iffifi ifficate:

I HIT I HIT I HIT TO THE DEPARTMENT OF THE PARTY OF THE P

deda.next

thank you!

HILL -

<u>https://3dom.fbk.eu/</u> <u>https://www.usage-project.eu/</u>

1 . 201