

Why Geodetic Reference Frames Matter for AIM

B.Coric & A.Wojtowicz EUROCONTROL

INTRODUCING MYSELF

Boris Coric

AIM Expert @ EUROCONTROL

AIRI SG Secretary

Instructor and SME @ ALC

19+ years of work experience

KEY OBJECTIVES

- Understanding Aeronautical Data and Aeronautical Information
- Insights on Data Quality Requirements (DQR)
- Why Aeronautical DQR Matters
- 4 Regulatory Compliance
- ⁵ Why WGS-84?
- ETRS89 vs WGS-84 same but different?

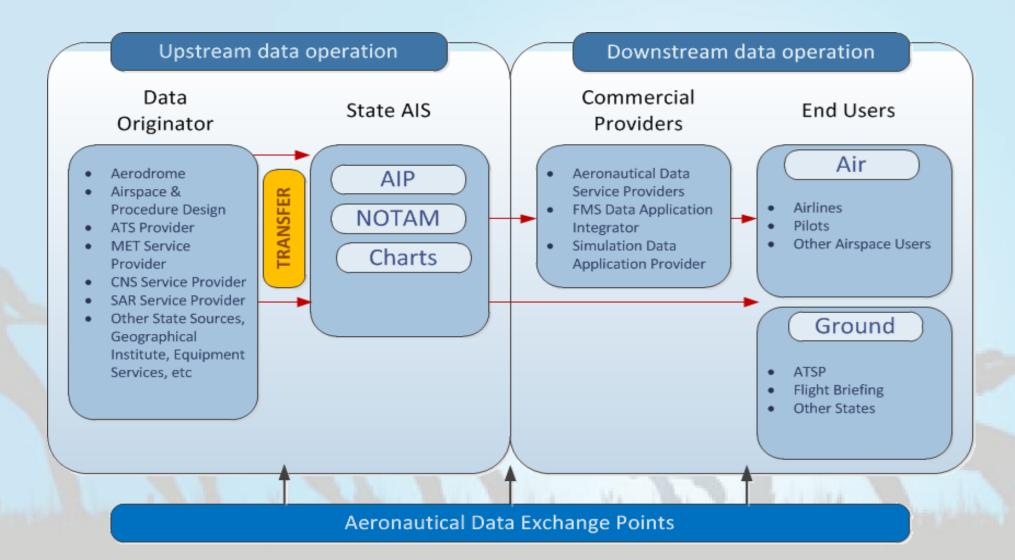
WEBINAR ON FUTURE REFERENCE FRAMES

UNDERSTANDING AERONAUTICAL DATA AND AERONAUTICAL INFORMATION

AERONAUTICAL DATA AND AERONAUTICAL INFORMATION

Definitions

Aeronautical Data: A representation of aeronautical facts, concepts or instructions in a formalized manner suitable for communication, interpretation or processing (coordinates, obstacles, airspace limits, etc.).


Aeronautical Information: Information resulting from the assembly, analysis and formatting of aeronautical data.

Aeronautical Information Service (AIS): A service established within the defined area of coverage <u>responsible for the provision</u> <u>of aeronautical data and aeronautical information</u> necessary for the safety, regularity and efficiency of air navigation.

Originator (aeronautical data or aeronautical information). An entity that is accountable for data or information origination and/or from which the AIS organization receives aeronautical data and aeronautical information.

AIS DATA CHAIN

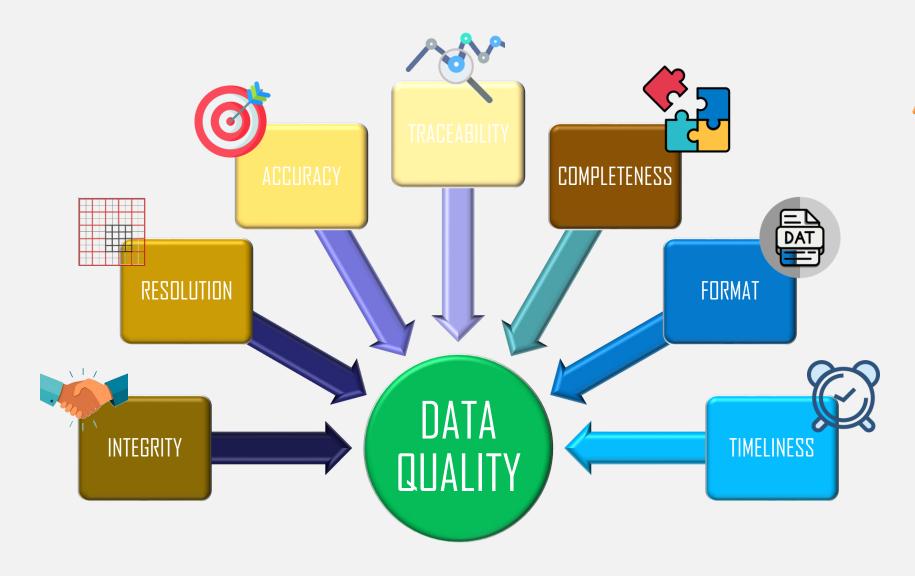
AERONAUTICAL DATA CATALOGUE

Subject	Property	Sub-Property	Туре	Description Not	ote	Accuracy	Integrity	Orig Type	Pub. Res.	Chart Res.	
ATO	<u> </u>	<u>'</u>	<u>'</u>	Final approach and take-off area. A defined area over which the final phase of the approach							
				manoeuvre to hover or landing is completed and from which the take-off manoeuvre is							
				commenced. Where the FATO is to be used by helicopters operated in performance class 1,							
				the defined area includes the rejected take-off area available.							
	Threshold			The beginning of that portion of the FATO usable for landing.							
		Position	Point	Geographical location of FATO threshold		1m	critical	surveyed	1/100 sec	1 sec	
		Elevation	Elevation	Elevation of the FATO threshold		See Note 1)					
		Geoid undulation	Height	WGS-84 Geoid undulation at FATO threshold position	See Note 2)						
	Departure end of runway			Departure end of the runway (DER), which is the end of the area declared suitable for take-off							
				(i.e. the end of the runway or, where a clearway is provided, the end of the clearway or the end							
				of the final approach and take-off (FATO) area).							
		Position	Point	Geographical location of DER		1m	critical	surveyed	1/100 sec	1 sec	
		Elevation	Elevation	The elevation of the DER is the higher of the elevations of the beginning and end of the							
							Λ /f-	+ · · · · ·			
	Туре		Text	SCOPE OF AERONAUT	ICAL	DAIA (leatures,					
	Designation		Text	Th			`		,		
	Length		Distance	attributes)							
	Width		Distance	Th							
	Geometry		Polygon	DATA QUALITY REQUIF		ıTC					
	Slope	1	Value	Th	71 1/ // 1 (111/					

ICAO AIM Data Catalogue

Version 2 based on ICAO PANS-AIM (Doc 10066), First Edition 2018 including Amendment 3

→ Aerodrome	Show DQR	Show subjects	Show AIXM mapping
→ Airspace	Show DQR	Show subjects	Show AIXM mapping
\rightarrow ATS and other Routes	Show DQR	Show subjects	Show AIXM mapping
$\rightarrow \text{Geographic Information}$	Show DQR	Show subjects	Show AIXM mapping
→ Navaid	Show DQR	Show subjects	Show AIXM mapping
→ Obstacles	Show DQR	Show subjects	Show AIXM mapping
→ IFP	Show DQR	Show subjects	Show AIXM mapping
Other information	Show DQR	Show subjects	Show AIXM ma


Data types

IDENTIFICATION OF DATA ORIGINATROS

REFERENCE FOR FORMAL ARRANGEMENTS

ADAPTIVE TO FUTURE REQUIREMENTS

AERONAUTICAL DATA QUALITY

Corrupt or Erroneous aeronautical information/data can potentially affect the safety of Air Navigation.

WHAT IS AERONAUTICAL DATA QUALITY?

A degree or level of confidence that the data provided meet the requirements of the data user in terms of accuracy, resolution, integrity (or equivalent assurance level), traceability, timeliness, completeness and format.

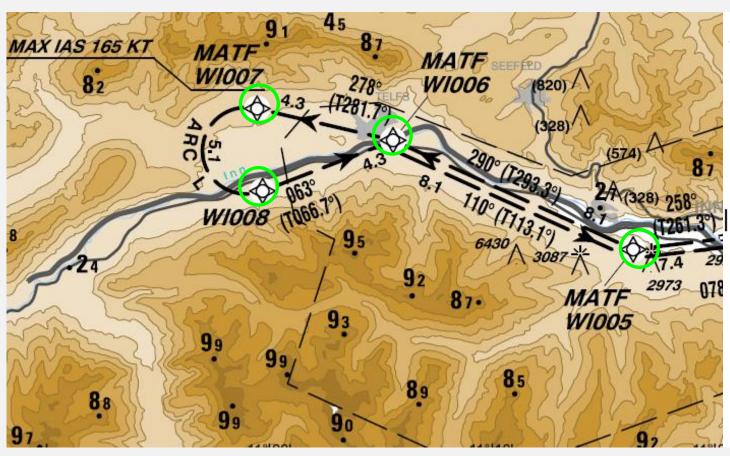
TRUST

WEBINAR ON FUTURE REFERENCE FRAMES

AERONAUTICAL DATA QUALITY MATTERS

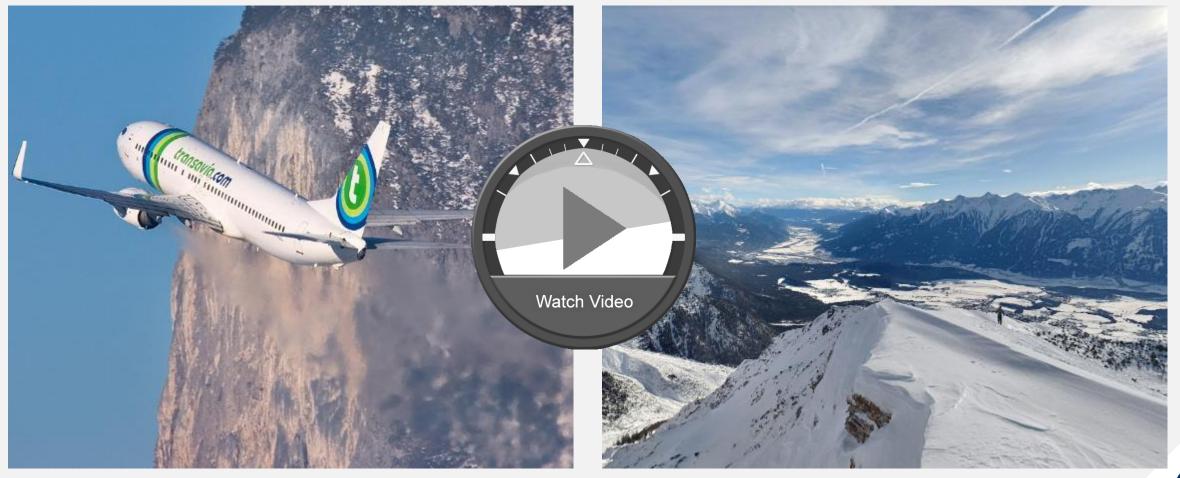
KATHMANDU INCIDENT₁

KATHMANDU INCIDENT₂


- Coordinates for RWY02 THR published in the AIP
 - 27°41′02.007″N
 - 085°21′12.215″E
 - Resolution: 1/1000th of an arc second
- 01 JAN 2015: AIRAC AIP SUP displacing RWY02 THR 120m North
- Coordinates published in AIP SUP
 - 27°41′06″N
 - 085°21′13″E
 - Resolution: Degrees, Minutes, Seconds

TOD APPLICATIONS

Innsbruck, RNP Z approach, RWY 26 (AR)


Instrument Approach Procedure	INNSBRUCK
	RNP 7 RWY 26 (AR)

			in our di			oach Pro						
Path Terminator	Waypoint				(Course/ Track	DIST	٦.	urn	ARC Centre Waypoint		ARC Radius
	Identifier	Туре	Flyover	Coordinat	5	° MAG (° True)	NM	Dir	ection	Identifier	Coordinates	NM
IF	RTT	IAF	no	N472551.3 E0115824.3	9							
TF	W1002	FAP	no	N472236.0 E0114930.0	ļ	232° (235.3°)	5.7					
TF	WI103		no	N471616.4 E0112647	6	244° (247.9°)	16.7		ght			
TF	RW26		yes	N471541.8 E0112125.	2	258° (261.1°)	3.7		ght			
TF	W1005	MATE	по	N471508.7 E0111606.	2	258° (261.3°)	3.7					
TF	W1006	MATE	по	N471820.4 E0110509.	0	290° (293.3°)	8.1		ght			
TF	W1007	MATE	по	N471912.1 E01058593	4	278° (281.7°)	4.3		eft			
RF	W1008		no	N471638.5 E0105921	2		5.1		eft	W1009	N471753.02 E0105834.83	1.3
TF	W1006	MATE	no	N471820.4 E0110509	0	063° (066.7°)	4.3					
TF	WI005	MATE	no	N471508.7 E0111606	2	110° (113.1°)	8.1		ght			
TF	WI103	MATE	no	N471616.4 E0112647	6	078° (081.1°)	7.4		eft			
TF	WI002	MATE	no	N472236.0 E0114930.0	1	064° (067.6°)	16.7		eft			
TF	RTT	MAHE	yes	N472551.3 E0115624.1	9	052° (055.2°)	5.7		eft			

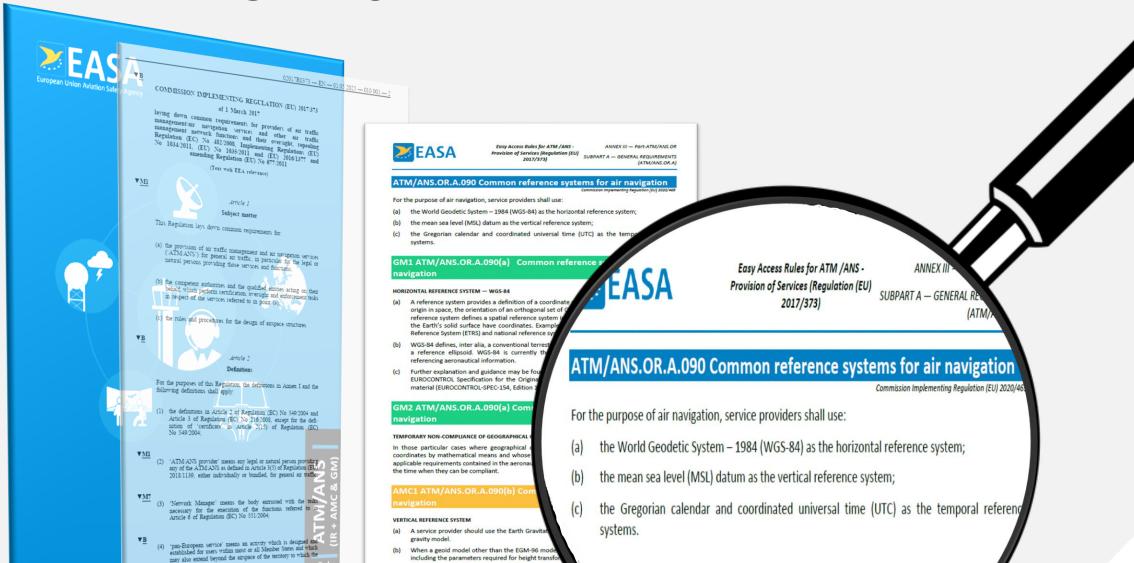
APPLICATIONS

Innsbruck airport surroundings

WEBINAR ON FUTURE REFERENCE FRAMES

REGULATORY COMPLIANCE

ICAO AIS/AIM DOCUMENTS


7th Edition, Amendment 1, available as of 30 July 2024

COMMON REFERENCE SYSTEMS FOR AIR NAVIGATION

including the parameters required for height transf should be provided in the aeronautical information p

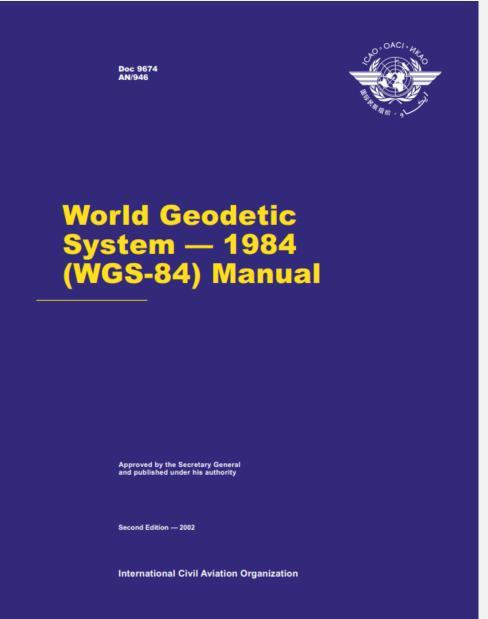
Powered by EASA eRules

11 ATM/ANS.OR.A.090(a)

Common reference systems for

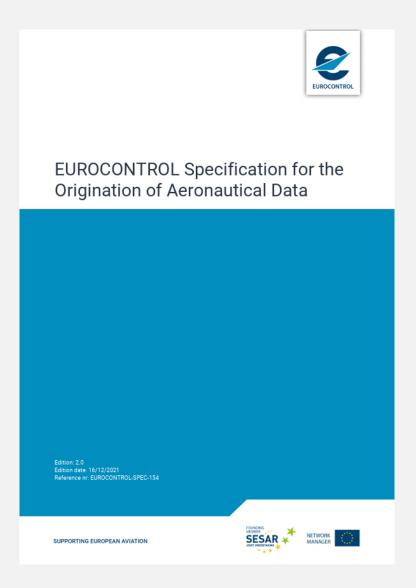
WEBINAR ON FUTURE REFERENCE FRAMES


WGS84, ETRS89 AND MORE



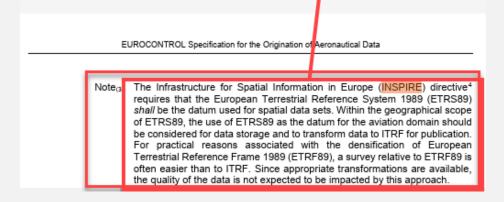
WGS-84 MANUAL

ICAO Manual, but US driven


- Good transversal global applicability
- Potentially requires an update
- Does not cover the European specificities for surveying

INSPIRE perspective

2.1.2.1 Horizontal Reference System


[DO-REF-010] The horizontal reference system for the publication of all coordinate data shall be the World Geodetic System-1984 (WGS-84).

Note(i). The latest updated WGS-64 (G-V62) reference frame is based on epoch 2005.0. (G indicates that the cooldinates were obtained through Global

2.1.2.1 Horizontal Reference System

[DO-REF-010] The horizontal reference system for the publication of all coordinate data shall be the World Geodetic System-1984 (WGS-84).

The Infrastructure for Spatial Information in Europe (INSPIRE) directive requires that the European Terrestrial Reference System 1989 (ETRS89) shall be the datum used for spatial data sets. Within the geographical scope of ETRS89, the use of ETRS89 as the datum for the aviation domain should be considered for data storage and to transform data to ITRF for publication. For practical reasons associated with the densification of European Terrestrial Reference Frame 1989 (ETRF89), a survey relative to ETRF89 is often easier than to ITRF. Since appropriate transformations are available, the quality of the data is not expected to be impacted by this approach.

CASE FOR TRACEABILITY: ETRS89 VS WGS-84 – SAME BUT DIFFERENT?

- Small discrepancies identified in the European AIS Database (EAD), caused by data providers loading ETRS89 native data using a WGS-84 EPSG code.
- Data surveyed locally in ETRS89, but uploaded "unde the disguise" of WGS-84, without proper transformation.
- Users' expectation: what they see should be what they get — true WGS-84 coordinates.

CASE FOR (RELATIVELY HIGH) ACCURACY – AERODROME MAPPING

- Aerodrome mapping is a product designed to visualize highly complex airport environments
- Support to the upcoming Digital NOTAM
- Accuracy requirements of 0.5 to 1 meter, ensuring that every element is correctly represented for reliable decision-making

Aerodrome mapping data (taxiway elements, part of runway) overlaying Google Maps imagery in EPSG:3857 Pseudo-Mercator projection

Thank you!

boris.coric@eurocontrol.int www.eurocontrol.int

