TOPAGE DATABASE

HOW INSPIRE INFLUENCED THE CREATION OF THE FRENCH NATIONAL HYDROLOGICAL NETWORK DATABASE

Stephane.garcia@ign.fr
Juin 2017
Summary

- The project
- BD Topage and INSPIRE general approach
- Discrepancies with INSPIRE
- INSPIRE adaptations
- Additions to INSPIRE
- Implementation
- Conclusion
THE PROJECT
Context

- Started in 2012
- Old product: CARTHAGE database
 - Rich semantic
 - Medium scale data (50k)
- New product: TOPAGE database
 - Rich semantic (mainly coming from BD Carthage)
 - Detailed geometry coming from large scale topographic data base (BD TOPO) (10k)
Goals

- INSPIRE compatible
- User needs
- Product Owner needs: To have a «flowing» network

INSPIRE models
DB Owner and User requirements (questionnaire)
Old Medium scale product
Large scale DB
Working group
Topage model
BD TOPAGE AND INSPIRE GENERAL APPROACH
Adaptation of INSPIRE model

- HydroNetwork and PhysicalWaters into the same model

- Less feature types (covered by other databases)
 - HydroPointOfInterest
 - Man-made Object

- Sandre specific attributes added to INSPIRE
Interpretation of INSPIRE model

- Combining hydro network and physical waters

INSPIRE

Topage
Shared principles with INSPIRE

- Covers almost all the INSPIRE HydroNetwork model

- Topage feature types
- Topage associations
- Croisement
- Tronçon hydro
- Element
- Cours d’eau
- Tr.Debut – Tr.Fin
- Nœud hydro
Shared principles with INSPIRE

- Topologic rules taken from INSPIRE data specifications on hydrography
 - Connectivity tolerance
 Taken from IR Requirement Annex II, Section 8.7.7 Theme-specific Requirements – Ensuring Network Connectivity
 - Fictitious links
 Taken from INSPIRE Recommandation n°49
DISCREPANCIES WITH INSPIRE
Discrepancies with INSPIRE

- Different modeling of surface water
 - In INSPIRE, watercourse can be GMSurface or curve
 - In Topage, watercourse is GMCurve
 => surface representation by another feature type
Discrepancies with INSPIRE

- In INSPIRE, direct link between basin and watercourse
Discrepancies with INSPIRE

- In BD TOPAGE, basins are linked with hydro nodes
 - Indirect link to the watercourse
 + Allows direct calculation of upstream / downstream basins

matching with INSPIRE will not be simple!
INSPIRE ADAPTATIONS
List of adaptations

- Language
- Flattening
- Code lists
- Specialization / generalization
- Multiplicity / Voidable
The model is in French

Mapping with INSPIRE attributes is documented

<table>
<thead>
<tr>
<th>Attributs ETH2.0</th>
<th>Correspondance Inspire</th>
<th>Format</th>
<th>Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>IdentifiantOH</td>
<td>Identifiant de l'objet hydrographique</td>
<td>localId de l'inspireId (Identifier)</td>
<td>Caractère</td>
</tr>
<tr>
<td>NomOH</td>
<td>Nom de l'objet hydrographique</td>
<td>attribut text du datatype SpellingO</td>
<td>Caractère</td>
</tr>
<tr>
<td>LangueNomOH</td>
<td>Langue du nom de l'objet hydrographique</td>
<td>attribut language de geographicalName</td>
<td>Caractère</td>
</tr>
<tr>
<td>StatutNomOH</td>
<td>Statut du nom de l'objet hydrographique</td>
<td>attribut nameStatus de geographic</td>
<td>Caractère</td>
</tr>
<tr>
<td>SourceNomOH</td>
<td>Source du nom de l'objet hydrographique</td>
<td>attribut sourceOfName de geograph</td>
<td>Caractère</td>
</tr>
<tr>
<td>TypeToponymeOH</td>
<td>Type de toponyme de l'objet hydrographique</td>
<td></td>
<td>Caractère</td>
</tr>
<tr>
<td>DateCreationOH</td>
<td>Date de création de l'objet hydrographique</td>
<td>beginLifespanVersion</td>
<td>Date</td>
</tr>
<tr>
<td>DateMajOH</td>
<td>Date de dernière mise à jour de l'objet hydrographique</td>
<td>endLifespanVersion</td>
<td>Date</td>
</tr>
<tr>
<td>StatutOH</td>
<td>Statut de l'objet hydrographique</td>
<td></td>
<td>Caractère</td>
</tr>
<tr>
<td>PrecAltiOH</td>
<td>Précision altimétrique de la donnée utilisée</td>
<td></td>
<td>Caractère</td>
</tr>
<tr>
<td>MethAltiOH</td>
<td>Méthode d'acquisition de la précision altimétrique</td>
<td></td>
<td>Caractère</td>
</tr>
<tr>
<td>PrecPlaniOH</td>
<td>Précision planimétrique de la donnée utilisée</td>
<td></td>
<td>Caractère</td>
</tr>
<tr>
<td>MethPlaniOH</td>
<td>Méthode d'acquisition de la précision planimétrique</td>
<td></td>
<td>Caractère</td>
</tr>
<tr>
<td>CommentaireOH</td>
<td>Commentaires sur l'objet hydrographique</td>
<td></td>
<td>Caractère</td>
</tr>
</tbody>
</table>
Flattening: Case 1: no flattening

Ex: Inspire Identifier

The type Identifier has been kept

However only the local id is capture in production process. The other attributes are automatically derived during the transformation to INSPIRE.
Flattening: Case 2: full flattening

Ex: Hydro Order Code

All attributes of the dataType HydroOrderCode are associated to the watercourse
Flattening: Case 3: Flattening with simplifications

Ex: Toponym

Only one spelling has been kept
Attributes not necessary in Topage BD have been removed
Flattening: Case 3: Flattening with simplifications

Ex: Level of Detail (MD_Resolution from ISO 19115)

Only usefull information in Topage has been kept (equivalentScale)

Example: [Diagram and code snippet related to INSPIRE standards and Topage]

INSPIRE

Topage
Code lists: Case 1 more values than INSPIRE

- Hydro nodes category codeList extended (voidable)
 - INSPIRE
 - «codeList»
 - HydroNodeCategoryValue
 - + boundary
 - + flowConstriction
 - + flowRegulation
 - + junction
 - + outlet
 - + source
 - Topage
Code de l'élément	Mnémonique de l'élément
1	limite
2	influence flux réseau
3	régule flux réseau
4	embranchement
5	exutoire
6	source
7	difféquence
8	perte/infiltration

- Origin of a hydro object divided
 - «enumeration...
 - OriginValue
 - natural
 - manMade
Code de l'élément	Mnémonique de l'élément
1	naturel aménagé
2	naturel non aménagé
3	artificiel
Code lists: Case 2 less values

Ex: Land-water boundary

All values kept. Unused values in status “Frozen”

<table>
<thead>
<tr>
<th>Code de l’élément</th>
<th>Mnémonique de l’élément</th>
<th>Statut de l’élément</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>equinoctialSpringLowWater</td>
<td>Gelé</td>
</tr>
<tr>
<td>2</td>
<td>higherHighWater</td>
<td>Gelé</td>
</tr>
<tr>
<td>3</td>
<td>higherHighWaterLargeTide</td>
<td>Gelé</td>
</tr>
<tr>
<td>4</td>
<td>highestAstronomicalTide</td>
<td>Gelé</td>
</tr>
<tr>
<td>5</td>
<td>plus hautes eaux</td>
<td>Validé</td>
</tr>
<tr>
<td>6</td>
<td>highWater</td>
<td>Gelé</td>
</tr>
<tr>
<td>7</td>
<td>highWaterSprings</td>
<td>Gelé</td>
</tr>
<tr>
<td>8</td>
<td>indianSpringHighWater</td>
<td>Gelé</td>
</tr>
<tr>
<td>9</td>
<td>indianSpringLowWater</td>
<td>Gelé</td>
</tr>
<tr>
<td>10</td>
<td>localDatum</td>
<td>Gelé</td>
</tr>
<tr>
<td>11</td>
<td>lowerLowWater</td>
<td>Gelé</td>
</tr>
<tr>
<td>12</td>
<td>lowerLowWaterLargeTide</td>
<td>Gelé</td>
</tr>
<tr>
<td>13</td>
<td>lowestAstronomicalTide</td>
<td>Gelé</td>
</tr>
<tr>
<td>14</td>
<td>plus basses eaux</td>
<td>Validé</td>
</tr>
<tr>
<td>15</td>
<td>lowestLowWaterSprings</td>
<td>Gelé</td>
</tr>
<tr>
<td>16</td>
<td>lowWater</td>
<td>Gelé</td>
</tr>
<tr>
<td>17</td>
<td>lowWaterDatum</td>
<td>Gelé</td>
</tr>
<tr>
<td>18</td>
<td>lowWaterSprings</td>
<td>Gelé</td>
</tr>
<tr>
<td>19</td>
<td>meanHigherHighWater</td>
<td>Gelé</td>
</tr>
<tr>
<td>20</td>
<td>meanHigherHighWaterSpring</td>
<td>Gelé</td>
</tr>
<tr>
<td>21</td>
<td>meanHigherLowWater</td>
<td>Gelé</td>
</tr>
<tr>
<td>22</td>
<td>meanHighWater</td>
<td>Gelé</td>
</tr>
<tr>
<td>23</td>
<td>meanHighWaterNeaps</td>
<td>Gelé</td>
</tr>
<tr>
<td>24</td>
<td>meanHighWaterSprings</td>
<td>Gelé</td>
</tr>
<tr>
<td>25</td>
<td>meanLowerHighWater</td>
<td>Gelé</td>
</tr>
<tr>
<td>26</td>
<td>meanLowerLowWater</td>
<td>Gelé</td>
</tr>
<tr>
<td>27</td>
<td>meanLowerLowWaterSprings</td>
<td>Gelé</td>
</tr>
<tr>
<td>28</td>
<td>meanLowWater</td>
<td>Gelé</td>
</tr>
</tbody>
</table>
Multiplicity

- Mandatory attributes in INSPIRE are mandatory in TOPAGE

- Voidable INSPIRE => multiplicity [0..1] or [0..*]

- Some voidable INSPIRE attributes are mandated in TOPAGE => multiplicity [1] or [1..*]
 Ex: persistance, level, widthRange…
ADDITIONS TO INSPIRE
Feature type additions

- Transition waters
 area between sea and river (delta, mangrove…)

- Watercourse surface
 surface representation of a watercourse
Relationship additions

- Lineage between hydro objects
Relationship additions

- Relationship with external databases

Source (hydro POI DB) Hydro node (Topage DB)
Attribute additions

- Business attributes: Salinity, principal / secondary watercourse
- Metadata at feature level: Accuracy, capture method, dates
IMPLEMENTATION
Data production (IGN)

- Validation of the model
 - Too complex to identify gaps with user needs
 - Prototype on small areas and data submitted to users

- Production has begun
Publication

- Draft exchange model
 - Adapted from the conceptual one
 - Shortening of attribute names
 - Selection of attributes to be published
 - No lineage
 - No metadata information on names (language, source, …)
 - ...
 - Only instanciable feature types are described (with inherited attributes)

- Exchange format
 - Shp (ESRI)
 - MIF/MID (for Map Info)
 - Maybe WFS and GML
 - Will be accessible through Sandre catalogue [http://www.sandre.eaufrance.fr/]
CONCLUSION
Conclusion

- At first: the idea was to start from INSPIRE model
 - Modeling task was led by an INSPIRE champion

- In practice
 - Most concepts are from INSPIRE but with adaptation
 - Some additions and discrepancies were necessary

- Will be easier to transform into INSPIRE model and for reporting to Europe

Thank you!