The Danish Basic-Data Initiative and the Data-Distributor in Service

Presentation for the Joint PCC and EuroGeographics CLRKEN webinar Copenhagen, June 16th 2020
Introduction

• The Danish public authorities register core information about
 • individuals,
 • businesses,
 • real properties and buildings,
 • addresses, maps and geography.

• The information, called Basic-Data, is used every day throughout the public sector.

• High-quality Basic-Data is an essential basis for the authorities to perform their tasks properly and efficiently across units and sectors.

• Basic-Data is used in a wide range of areas also in the private sector: i.e. in real estate, insurance, financial and telecom sectors.
The relational model of the Basic-Data registers:
What was the problem?

- **The need for modernization:**
 Data structure and content reflected the needs of the public sector at the time of development,

- **Poor data quality:**
 Data was not necessarily coherent and could be redundant from one register to the other,

- **Non-consistent modelling and documentation of data:**
 Difficult to combine and exchange data between registers,

- **Complex data-distribution:**
 Request- and service-structures differed from one register to the other and it was difficult to gain an overview of the infrastructure and the integrations,

- **Complex data-management:**
 Data was distributed through a series of channels owned by the public sector or outsourced to private IT-companies,

- **Costly data usage:**
 The use of Basic-Data was in most cases payable.
What were the aims of the Basic-Data Initiative?

The Initiative aimed at securing:

- **free, fast and reliable access** to public Basic-Data for authorities, companies and citizens,
- **high-quality and coherent basic-data** updated once and for all **at one place**,
- increased effectiveness, modernization and high-quality public administration through **standardized data and interfaces**,
- innovation, growth and job creation in the private sector through opening up for **new ways of using and combining public authoritative data**,
- a reduction of costs through the **use and the sharing of public data**.

In this sense the Basic-Data Initiative aimed at more than just opening up to the public data collections.
The BC of the Basic-Data Initiative:

Public investment:
• The Basic-Data Initiative is a joint venture of the Danish Government, the municipalities (Local Government Denmark) and the Danish Regions.
• The investment amounts to 135 million Euro.

Financial benefits:
• The Basic-Data Initiative is expected to deliver economic benefits of 35 million Euro a year in the public sector.
• Private businesses are given the opportunity to use free Basic-Data in developing new solutions and products. Basic-Data Initiative thus contributes to growth and innovation in the private sector. Expected economic benefits: 70 million Euro a year.
The 4 pillars of the Danish Basic-Data Initiative:

1. Making Basic-Data freely available for everyone.
2. Standardizing Basic-Data:
 - The Datamodelling Project (GD8)
3. Improving the quality of Basic-Data and adding new data, where needed:
 - The Real Property and Address Data Projects (GD1/GD2)
4. Improving the availability of Basic-Data through a shared and efficient distribution platform:
 - The Data-Distributor Project (GD7)

The objectives of the Initiative was achieved through a series of subprojects:
The Datamodelling Project:

• The project has established a coherent common data-model for all Basic-Data.
• The Basic-Data model was established through close cooperation between the Danish Agency for Digitisation and the Basic-Data authorities.
• The model gives an overview over data and relations between data.
• The model has made it possible to link data across the sectors.
• It is a characteristic feature of the model that objects and attributes are unique and can only be found in one Basic-Data register.
• The model is public.
• For more information look here: http://data.gov.dk/model/
The Real Property Data Project:

- Until now three registers contained data on real property: The Cadastre (Matriklen), the Building and Dwelling Register (BBR) and the Land Register (Tinglysningen). However, data was inconsistent and there was no unique identifier for identical objects.

- Through the Real Property Data project data was enhanced and made consistent, a.o. through the introduction of a unique ID for real property.

- At the same time the basic registration of all types of real property was made coherent and recorded in one register: The Cadastre.
The Data-Distributor Project:
What is the Data-Distributor?

The illustration below shows as example the multiple and complex interfaces and integrations of just one Basic-Data-register before the Data-Distributor-Project:
The Data-Distributor Project:

The project aims at establishing the Data-Distributor as the core single-point infrastructure element for the distribution of Basic-Data:
What can a user expect from the Data-Distributor?

• A secure and stable, scalable platform,
• High availability (99.9%) and high performance,
• Easy access to data through standardized interfaces,
• The possibility to compile data from different registers in a single service,
• Standardized service-types: online-requests, file-download,
• Distribution of events by changes of data (create, update, delete),
• Integration of data and the use of data,
The logic model of the Data-Distributor functionality

Part 1. The Basic-Data registers:
How does the Data-Distributor function?

1. Registers, data and legal responsibility for the data:
 • The administrative IT-systems of the public authorities (CPR, CVR, Matriklen, BBR etc.) continue to exist and the legislation behind them remains as a whole unchanged,
 • The authorities own the registers and are responsible for the data, their collection and validity,
 • The authorities are responsible for the operation, the maintenance and the support of the administrative systems,
 • The authorities authorize the access to the data,
 • As previously data is created, updated and deleted through the interfaces of the administrative systems, i.e. through updates by public servants,
 • The authorities save all data as masterdata in their own systems,
 • The authorities develop a dedicated interface for replicating data to the Data-Distributor,
 • The authorities specify for the Data-Distributor to configure:
 • Datamodel,
 • Replication and synchronization of data,
 • Terms of use and security,
 • Services (rest-services, events, filedownload),
 • Metadata
The logic model of the Data-Distributor functionality

Part 2. The users:
How does the Data-Distributor function?

2. The users:

• The users have to register as users of the Data-Distributor,
• For access to certain data-collections the users will need authorization by the authority responsible for the data,
• To gain access to data, where access for legal reasons is restricted, the user will have to identify himself through i.e. password, certificates and/or IP-whitelisting,
• The users access data through the services, filedownloads and events, which the registers have specified,
• The users gain access to data through standardized web-requests,
• All users can – if authorized – get access to data, but communication with the Data-Distributor is “encoded”, as the Data-Distributor primarily is meant for system-to-system-communication,
• It is part of the genetic code of the Data-Distributor, that Basic-Data can be used by all users, among other things for the development of clients, user interfaces, intelligent solutions,
• For more information see here: http://datafordeler.dk
What is the status of the Data-Distributor development:

• The Data-Distributor has been developed and is in production displaying all planned Basic-Data-registers
• Data and services have been configured within all Basic-Data-areas
• The Data Distributor is now the one-stop distribution channel, giving access to a wide range of interoperable basic public data, ranging from information about individuals, businesses, real property, to geospatial data on buildings.
The Data-Distributor in production – status May 2020:

USAGE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Webservice-requests, mill.</td>
<td>37.3</td>
<td>35.1</td>
<td>41.5</td>
<td>59.6</td>
<td>73.7</td>
<td>83.0</td>
<td>67.3</td>
<td>96.3</td>
</tr>
<tr>
<td>Events, thous.</td>
<td>210.714</td>
<td>213.747</td>
<td>154.252</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- Events Pull</td>
<td>122.919</td>
<td>112.875</td>
<td>120.052</td>
<td>114.218</td>
<td>153.848</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Events Push</td>
<td>71.050</td>
<td>61.603</td>
<td>73.948</td>
<td>63.938</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filedownloads, thous.</td>
<td>784</td>
<td>5.974</td>
<td>9.818</td>
<td>10.833</td>
<td>5.077</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Userdefined Small</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.610</td>
<td>6.951</td>
<td>7.445</td>
</tr>
<tr>
<td>- Userdefined Medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.156</td>
<td>2.447</td>
<td>2.922</td>
</tr>
<tr>
<td>- Userdefined Large</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>797</td>
<td>845</td>
<td>921</td>
</tr>
<tr>
<td>- Predefined</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.832</td>
<td>1.660</td>
<td>1.786</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique, Active users</td>
<td>271</td>
<td>281</td>
<td>265</td>
<td>328</td>
<td>371</td>
<td>382</td>
<td>357</td>
<td>395</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-time-updates</td>
<td>357.781</td>
<td>362.738</td>
<td>254.509</td>
<td>266.189</td>
<td>284.190</td>
<td>335.294</td>
<td>250.031</td>
<td>248.138</td>
</tr>
<tr>
<td>Batch-updates</td>
<td>31.840</td>
<td>32.436</td>
<td>27.024</td>
<td>35.906</td>
<td>37.895</td>
<td>40.546</td>
<td>28.356</td>
<td>35.299</td>
</tr>
</tbody>
</table>
The challenges?

• **Time to market:**
 - The IT-world changes fast and with this also the business needs of the registers – and of the users. As the core infrastructure element for the distribution of Basic-Data the Data-Distributor has to adjust to the development and meet the needs.
 - Changes to the data-structure of the registers can be complex and time-consuming because of the tight knit integration and the centralized distribution through the Data-Distributor.

• **Governance:**
 - The Basic-Data Initiative implies a change of business for the data-responsible authorities. They will have to find new ways of cooperating on inter-data questions. A strong governance-forum is necessary.

• **Calibration:**
 - Calibration includes the calibration of workflows in the integration between the registers, the calibration between the registers and the Data-Distributor, between the registers and the users as well as between the Data-Distributor and the users.

• **Closing down the existing distribution channels:**
 - The BC of the Basic-Data Initiative relies on the closing down of the existing distribution platforms. However: This has always been an extremely difficult job...
Questions?